Insight on the Future Trends in Automated Test Equipment


For the years to come, analysts expect significant growth in the global automated test equipment (ATE) market, driven by the introduction of new technologies, highly integrated electronic components and by the greater complexity of new electronic devices. The reduced time-to-market, combined with the need to provide high quality standards for even the most advanced functionalities, are pushing manufacturers towards automatic test solutions, whose reliability and repeatability guarantees a significant reduction in time, maintenance and costs. ATEs help manufacturers to perform accurate tests and measurements, reducing the incidence of failures and errors, and providing test results much faster than with manual testing methodology. In view of growing competition and the consequent need to achieve economies of scale providing high quality products able to meet the growing consumer demand, manufacturers around the world are adopting automated testing techniques. The ATE solution in vertical sectors, such as semiconductor, consumer, automotive, industrial, aerospace and defense is set to grow the best in the coming years.

ATE classes

Automated Test Equipment (ATE) is a computer-controlled system that allows the automatic test of components, printed circuit boards, interconnections or entire electronic devices with minimal operator intervention. The advantages offered by an ATE include reduced test times, repeatability of the verification procedure and cost savings, especially in the case of high DUT (Device Under Test) volumes.

A first type of ATE deals with performing the test of semiconductors and integrated circuits. By applying a predetermined and programmable pattern of electrical signals to a semiconductor or an IC, the ATE measures the corresponding output signals and compares them with expected values or ranges. These systems can in turn be divided into logic testers, memory testers, and analog testers. Semiconductor testing, with DUTs ranging from common silicon-based components to complex integrated circuits and System-On-Chip (SoC), is normally divided into two levels. The first is the wafer test (also called die sort or probe test), whose task is to test the wafers. The second is the package test (also called final test), performed on the component after packaging. The wafer test uses a prober and a probe card, while the test package uses a handler and a test socket. The DUT is physically connected to the ATE through a device called handler, or prober, and through a customized Interface Test Adapter (ITA) that adapts the ATE resources to the DUT. This class of ATE includes logic test systems, designed to test microprocessors, FPGAs, ASICs and other logic devices, linear or mixed signal equipment (for testing ADCs, DACs, amplifiers, comparators and video devices), passives components ATEs (capacitor, resistor, inductor) and discrete ATEs (MOSFET, SCR, Zener, JFET, etc.).

ElevATE Semiconductor, a leading supplier of innovative, low power, high density components for the design of next generation Automated Test Equipment (ATE), provides Mystery (visible in Figure 1), a 500 MHz SoC with eight independent pin channels for ATE equipment. Each channel is configured via a 50MHz SPI interface, and all real time data is programmed and read back through high speed FLEX I/O pins that can be configured to interface directly to other devices using multiple single-ended and differential logic families.

Figure 1: ElevATE Mystery SoC

New Rainier SOC 8 Channel / 1.6GHz

This new pin electronics SoC increases speed by 50%, reducing power by 67% and total size by 75%. A 50% speed increase allow to test even the most performant processor, SoC, FPGA, and memory technologies. A 67% power reduction allows to triple the number of pins or DUTs without increasing the power budget. A 75% size reduction allows to quadruple the number of pins under test without expanding the overall PCB size.

The second type of ATE deals with PCB testing (both before wave soldering and after assembly) in order to detect any manufacturing errors and ensuring that each product leaves the factory free from defects. Automated PCB testing includes optical inspection techniques, such as Automatic Optical Inspection (AOI) and Automatic X-Ray Inspection (AXI), flying probe test, and bed-of-nails in-circuit fixture test.

Finally, the interconnection testing verifies the status and quality of interconnections, cables and connectors. In particular, it is able to detect opens (missing connections), shorts (open connections) and miswires (wrong pins) on cable harnesses, distribution panels, flexible circuits, and membrane switch panels with commonly used connector configurations. Interconnection testing also includes resistance and hipot tests.

For Test During Burn-In (TDBI) applications and low-cost testers, ElevATE offers the Kilimanjaro SoC, shown in Figure 2. Fabricated in a wide voltage Bi-CMOS process, the Kilimanjaro incorporates two channels of programmable drivers and window comparators into a small 5mm x 5mm QFN package. Each channel has per pin driver levels, data, and high impedance control, along with per-pin high and low window comparator thresholds levels.

Figure 2: ElevATE Kilimanjaro SoC

ATE market segmentation

ATE market can be segmented based on the type of product, application or geographical area. Regarding the product, the market is divided into non-memory, memory, and discrete automated test equipment. Recent innovations in sectors such as IoT and automotive (including autonomous vehicles), together with the significant advances made by defense and aerospace sectors, are changing the dynamics of the market. The main objective of manufacturers is to improve customer satisfaction by providing superior quality and reducing both time-to-market and testing costs. Based on the application, main ATE market categories include automotive, consumer, aerospace and defense, telecommunications and medical. Geographically, the global ATE market is dominated by North America, whose market share is expected to grow further in the coming years, as well. The main drivers of growth are determined by the increasing application of ATEs in the aerospace and defense sectors. The global markets of Europe and Asia-Pacific are also expected to grow, with a CAGR between 3% and 4% through the 2020-2022 time horizon. In the same forecast period, the Asia-Pacific market is expected to become the largest regional segment, due to the significant presence of semiconductor industries.

Market future prospects

The global ATE market size, valued at over four U.S. billion dollars in 2019, is expected to witness an important growth over the next few years. According to analysts, this growth will be driven by the increasingly widespread use of ATEs in the automotive and semiconductor industry, the adoption of 5G technology, and Artificial Intelligence/IoT markets growing rapidly. Other key factors are the significant increase in the number of connected devices and consumer electronics, with the need to provide high quality products reducing the time to market. The growing adoption of highly integrated electronic components, such as System on Chip (SoC) and FPGAs, and the high demand for consumer electronics will be a driving force for the growth of the ATE market in the coming years. Moreover, the miniaturization and complexity of the latest generation electronic components will broaden the areas of application of ATEs.

The tremendous progress made in semiconductor manufacturing processes, coupled with the expansion of connected devices in developing countries and the spread of the IoT network, will be a driving force for the growth of the automated test equipment market in the coming years. Furthermore, the considerable technological advances associated with the complexity of the design and the need for effective test systems are factors that will favor the expansion of the ATE market. The latest electronic technologies have significantly reduced the costs and time required for manufacturing integrated circuits and semiconductors, increasing the profit margin reserved for companies. This represents an important opportunity for ATE manufacturing companies, whose priority is to constantly invest in research and development in order to improve their product portfolio by adapting to the latest trends in the electronics sector.

Supply Chain 2021

Look back on 2020, I want to thank our customers and supply partners for a great year, despite all the global challenges.

As we look forward, there is a consensus across the industry that we all are entering a period of significant expansion in the semiconductor market.  Across almost all market verticals, strong growth is forecasted for the next several years.  And like all semiconductor manufacturers, we are seeing some impacts show up in our supply chain.  Capacity has tightened, and lead times are extending across the industry.

With this constrained supply environment, we are asking our customers to please increase the frequency, time horizon, and the accuracy of your forecasts where possible.  Current product lead times have extended to 7 months on average.  We continue to procure supply to our customers forecasts.  We will always strive to meet all our customers demand, however unforecasted demand may prove to be challenging.

For the highest level of support, we ask customers to forecast their demand monthly, with a 12 month time horizon, and to place orders with 8 to 12 weeks of leadtime.  Unforecasted demand, and orders inside 8 weeks are subject to a 15% cost adder to mitigate the expedite fees we are charged by our supply partners.

Thank you for your continued support, and the privilege of being your ATE technology partner

Adam Haigis, Vice President of Operations

David Kenyon: Looking Forward to 2021

Hello and Happy 2021!  I hope this note finds you healthy and ready for the New Year.  We @ Elevate have been very busy at the end of 2020, and we see the pace quickening into ’21.  As you may have read in other posts, the semiconductor supply chain is getting crowded and filling up – orders are booking out longer and longer and we are working our supply chain magic to refill shelves with inventory after a very busy year.  We also have new product – Mystery final silicon is shipping today, the Whitney production parts have shipped and are in house for testing, and we should complete another tapeout on our next gen pin electronics by the end of January (knock on wood!).  We’ve never had so much new product either in the fab, or in house for test at the same time! 

Our company is growing, too – we’re adding operations people, business/administration people, and of course, design engineers and product engineers. 

While we are proud that we came out of 2020 healthy and growing, we are sensitive to the needs of our customers and partners around the world and we can’t wait to re-engage in person this year, when conditions permit.  Video calls are a good tool, but nothing takes the place of sitting down with you and learning about your business, and your test needs.  I’m looking forward to being able to do that in 2021!

Have a great year, and please remember to get us your forecast early this year.. so we can make sure we have you covered for the demand surge that is hitting everyone these days. 



From Our CEO: Working With ElevATE

“As our industry continues to consolidate, we find that our customers are more interested today in creative ways to partner together to solve their test needs; requirements vary significantly from the recent past of simply using a one-size-fits all approach of buying off the shelf parts and spending lots of R&D on board design.  We are finding more unique ways to leverage one of the world’s largest portfolios of analog test IP in putting together semi-custom parts, derived from either something in our existing portfolio or using IP from multiple designs.  Since we are solely focused on this market, we are able to build these designs at lower cost and faster than large companies who have a main business far outside of ATE and test; our threshold of investment for custom and semi-custom applications can be a factor of 10X lower than multi-billion dollar public companies in this space.

Which, I would argue, is why there is only one public company left in test – this market is not a place for people who are not patient, take a long-term view, and are focused on the needs of test customers.. not Wall Street quarterly earnings reports.

When you have unique test requirements that fall outside the bounds of off-the-shelf ATE offerings, engage us and let us use our IP to find a solution that works for you, with an investment level you can manage.”

5G Test

Challenges involved in 5G Testing


The imminent large-scale rollout of 5G technology imposes new and tough challenges for designers of PCB, network equipment and electronic devices in general. 5G will not only represent an increase in data rates, but it will be a real revolution, with latency times reduced up to 1ms and the use of millimeter waves (mmWave) to support greater bandwidth. PCBs for 5G mobile and network devices must be able to simultaneously manage higher digital data rates and higher frequencies, pushing mixed signal design to its limit. 5G applications will also pose a variety of new challenges for the engineers developing automated test equipment (ATE). Compared to the current 4G mobile network, the rollout of 5G will force designers to rethink the layout of PCBs used in mobile devices, data transmission networks and IoT infrastructure. Ensuring signal integrity at every point on the board represents one of the most difficult challenges imposed by 5G testing. Due to the presence of mixed signals, it will be necessary to prevent EMI between the analog and digital sections of the board, verifying that the FCC EMC requirements are met.

Impact of 5G features on testing

Transition from 4G to 5G network will not only result in a substantial improvement in data transmission rates and greater bandwidth availability but will also introduce new features that are destined to radically change many aspects of our lives. 5G network aims to provide 10-20x faster data rates (up to 1 Gbps), an increase in traffic of up to 1000x and an increase of up to 10x in the number of connections per square kilometer. Latency will be very low, of the order of 1ms, about ten times lower than that obtainable with a 4G network. Low latency is essential for the implementation of applications with real-time behavior, such as virtual reality and augmented reality (VR/AR), machine-to-machine (M2M) communication systems and autonomous vehicle infrastructure sensors.

5G networks will operate on a much wider frequency range than was available with previous mobile technologies. Printed circuits intended for mobile devices and network equipment will have to simultaneously manage high speed digital signals and high frequency RF signals, pushing mixed signal design to its limits. While 4G network uses frequencies between 600 MHz and 5.925 GHz, 5G network will significantly expand its upper frequency limit, pushing itself into the millimeter wave (mmWave) band. Bandwidth per channel is also an important factor affecting the design and testing of 5G PCBs and devices. While in 4G network the bandwidth per channel was equal to 20 MHz (limited to 200 kHz in IoT devices), in the fifth generation mobile network we will have a bandwidth per channel equal to 100 MHz for frequencies below 6 GHz and 400 MHz for frequencies above 6 GHz.

PCBs designed for 5G applications will require analog and digital components capable of operating at very high frequencies and data rates, whose reliability and efficiency can only be guaranteed through effective thermal management. Temperature monitoring is therefore another relevant factor for assessing a correct behavior of the PCB or device.

5G device testing

The performance requirements imposed by 5G technology will create unprecedented challenges in the testing of integrated circuits, System-On-Chip (SoC), PCBs, mobile devices and network equipment. Most 5G NR (New Radio) installations will use the 3.5 GHz frequency and the 28 GHz to 29 GHz frequency range. Both of these frequency ranges are new to the cellular network and will require architectural changes and modifications to radio access techniques. The ability to achieve greater network capacity and higher transmission data rates will require the use of advanced technologies, such as massive MIMO (multiple-input/multiple-output) and beamforming.

While still in the early stages of deployment, 5G technology is gaining momentum, posing urgent questions about how and at what cost to test mmWave devices used in different RF front-end module architectures and networking equipment. In addition, mmWave signals essentially propagate in the line-of-sight direction and are more subject to atmospheric attenuation than sub-6 GHz bands, resulting in the need to perform accurate tests capable of covering all operational scenarios. Phased array antennas, required to support advanced features such as beamforming, will benefit from the small size to allow for multiple antenna elements on the same PCB. The main challenge will be to reduce parasitics between the antenna and the low noise amplifier (LNA) on the receiving side, and with the power amplifier on the transmitting side. The fulfillment of the requirements must also be tested on the antenna, also using OTA (Over-The-Air) techniques. The use of millimeter waves will create new challenges for test systems. First of all, it will be necessary to reduce the distance that separates the test hardware and the cooling system from the probe environment, in order to minimize the particularly high-power losses created at mmWave frequencies. Additionally, testing boards and modules with integrated antenna will require a different approach, bearing in mind that in some cases only over-the-air communication between the test system and the DUT will be possible.

ATE tools

The complexity of the required compliance testing is growing exponentially with each new generation of mobile technology. Release 14 of 3GPP (which already contained some pre-5G functionality) specified about 15,000 tests, Release 15 (partial 5G) about 300,000 tests, whereas Release 16 (full 5G) will introduce additional tests. As the number of required tests goes up, the need for automated test systems increases, capable of supporting high frequencies and speeds and easily configurable. Automated Test Equipment (ATEs) are essential to ensure the proper functioning of PCBs, SoCs or individual components used in the implementation of the 5G network.

ElevATE Semiconductor is a leading company which provides world class test integrated circuits (ICs) that address the industry’s most complex ATE challenges. Designing state of the art chips, ElevATE delivers the highest density, lowest power ATE solutions available. ElevATE products can be grouped into four main categories, depending on the technology on which they are based:

  • integrated pin electronics products – ElevATE is the market leader in low power, high density integrated pin electronics. Developed in a pure CMOS technology, these products enable customers to develop next generation high density instruments with increased parallelism fro reduced cost and improved system reliability;
  • integrated DPS products – these Device Under Test (DUT) power supply solutions incorporate up to 8 independent DUT Power Supply Unit (DPS). The interface, the control, and the I/O are digital, while all analog circuitry is inside the chip. A single chip is able to provide a complete DPS solution;
  • integrated PMU/VI products – Parametric Measurement Units and Virtual Instruments provide best in class density as high as 8 channels per chip and voltage up to 60V. PMI and VI products are cost-sensitive solutions that provide both voltage and current source and measurement capability for a wide range of applications;
  • integrated high voltage products – based on a highly integrated dual channel wide voltage System-on-a-Chip (SoC) pin electronics solution, these products incorporate every analog function, along with some digital support functionality, required on a per channel basis for Automated Test Equipment.

Among ElevATE portfolio solutions is the Venus 4 (ISL55161), a highly integrated SoC incorporating a dual channel 400MHz/800Mbps pin electronics differential driver and comparator, active load, timing deskew, PMU and DAC. Available in a 64-Lead 10mm x 10mm TQFP and in a 64-Lead 9mmx9mm QFN package, the SoC features a Pdq ≤ 500mW/Channel @ 11V Operation.


Figure 1: Venus 4 (ISL55161)

The SoC, whose block diagram is shown in Figure 2, is particularly suitable for applications such as Automated Test Equipment (ATE), instrumentation and ASIC verifiers.

venus designs

Figure 2: Venus 4 block diagram

Chinese Japanese Korean English
Scroll to Top

ElevATE Product Selection Guide

Click below to download our latest product selection guide.


SOC Octal 500 MHz Integrated Pin Electronics/DAC/PPMU/Deskew

Download request. Please fill in the request below to receive our Mystery Datasheet.

Europa ISL55180
PDF DataSheet

Thanks for filling out our form. Click on the button below to download our PDF Datasheet.