Jupiter Quick Start Application Note

Rev B03: 05/20/2013

This document contains information on a product under development. The parametric information contains target parameters that are subject to change.

Document Revision History

Revision	Date	Description
A01	7/13/04	Initial Draft – Rev 3 only
B01	6/2/2006	Rev 8 support
B02	7/2/2006	For Sel-FV example, section 1.4
		 Fixed Local-Sense* = 1 register value
		 Added Sel-FB = SENSE; remote feedback option.
B03	05/20/2013	Change to Elevate Semiconductor

Table of Contents

1 Introduction	
1.1 Set Jupiter Supplies	
1.1.1 Measure REXT	
1.2 Register/RAM Access (CPU Port Transactions)	
1.2.1 Read Die ID Register	
1.2.2 Register Access	
1.2.3 RAM Access	5
1.3 Reset State	
1.4 Set FV = 3V on FORCE-A and FORCE-B	7

1 Introduction

This document describes the steps to perform an initial system check-out of a Jupiter Rev 8+ device. These procedures are not applicable to earlier revisions as the register map and functionality are different.

These instructions assume the customer system can set the Jupiter supplies, has a mechanism to read/write registers, has the ability to measure voltages (either using an external DMM or system resource), control the digital input pins, and so on. The customer should be able to adequately cool Jupiter.

Important Note: The steps described below illustrate a cause and effect to demonstrate how to interface with the device. In a normal application; sequencing, calibration and other factors may require the registers to be written in a different order. Please refer to the Planet ATE Software Driver documentation for details.

1.1 Set Jupiter Supplies

The first step is to apply the appropriate voltage. For initial checkout, it is recommended to set VCC_OUT and VCC to the same voltage. After power is applied, it is recommended to toggle the hardware reset (active high) on Jupiter device.

Verify the voltage at the Jupiter pins or within close proximity to ensure there are no IR drops. In addition, the customer should verify the approximate current flow for each supply.

Note: In most systems, it may not be possible to measure the supply currents.

Supply	Voltage (V)	Approximate Current (mA)
VCC_OUT	16.0	5
VCC	16.0	20
VEE	-5.0	-25
VDD	3.3	15
VREF	3.0	0.0

Table 1: Power-ON Current Values

1.1.1 Measure REXT

The next step is to measure voltage of the REXT. REXT voltage should track the VREF voltage within 25mV.

1.2 Register/RAM Access (CPU Port Transactions)

The following steps perform simple register/RAM access (write/read) to verify to CPU port is functioning.

1.2.1 Read Die ID Register

Read the Die ID registers (address = 0xC0FF); Table 2 lists the expected return values for different silicon revisions.

Table 2: Die ID Register Values

Rev	Read-back Data (HEX)
8	0x1F48
#	0x1F4#

1.2.2 Register Access

Follow Table 3 to verify the basic ability to write/read registers. The following bullet items highlight some key aspects of a register access:

- Address bit D15 (Register Bit) must be '1' to access a register
- Address bit D14 (Central Bit) is used to distinguish between Per-Chan and Central Registers
- WE bit must be '1' for the corresponding Data bits to be written
- WE bits (typically) read back '0'
- Writing to Undefined Data bits has no effect
- Undefined Data bits (typically) read back '0'
- A RESET sets all registers to a default value of '0000' (except Read-Only registers)
- Refer to the CPU Protocol Timing diagram for details

Table 3:	Write/Read	Registers
----------	------------	-----------

Description	Address (HEX)	Write Data (HEX)	Read Data (HEX)
Static Addr#7: set all bits high	0x8007	0xFFFF	0x03DB
Static Addr#7: clear SR-Adj bits	0x8007	0x0400	0x001B
Static Addr#7: clear rest of bits	0x8007	0x0024	0x0000
Static Addr#64: set all bits high	0x8040	0xFFFF	0x0FBF
Static Addr#64: clear all bits	0x8040	0x1040	0x0000
Rt-DAC Addr#6: set all bits high (note: no WE bits)	0x8086	0xABCD	0xABCD
Central Reg: Software RESET	0xC001	<don't care=""></don't>	0x0000 (all registers)

1.2.3 RAM Access

Follow Table 3 to verify the basic ability to write/read RAM. The following bullet items highlight some key aspects of a RAM access:

- The Read-back Data matches the Written Data
- Address bit D15 (Register Bit) must be '0' to access a register
- Address bit D14 (Central Bit) is used to distinguish between Per-Chan and Central Registers
- A RESET does NOT set the RAM contents to a default value. They are left unchanged
- A RAM read-back requires 2 addition clock cycles
- Refer to the CPU Protocol Timing diagram for details

Table 4: Write/Read Registers

Description	Address (HEX)	Data (HEX)
VCH Value DAC	0x0002	0xFFFF
VCH Offset DAC	0x0022	0xAAAA
VCH Gain DAC	0x0042	0x5555

1.3 Reset State

Whenever a Hardware or Software reset is issued, the device is configured into the following state.

Note: The rest of the examples rely on the default (reset) configuration to demonstrate the minimum register transactions to achieve the desired configuration.

- RAM Unknown at power ON. Left unchanged if reset issued from a valid configuration
- Registers all registers are initialized to '0'; which implies:
 - o All switches open
 - Feedback = FORCE_A (tight loop)
 - Sel-Force = GND (\overrightarrow{FORCE} A output is always active and therefore will be 0V approximately)
 - IR = 15uA
 - o Voltage Range 0
 - V-Clamps and I-Clamps are disabled
 - o Monitor is in high-Z
 - OT-Alarm enabled (OT-Alarm-Dis=0)
 - Kelvin and Current Alarms disabled
 - o CAP_DIS*, DPS_EN*, and CBIT* high-z (no current flowing)

1.4 Set FV = 3V on FORCE-A and FORCE-B

Use the following sequencing to output 3V on the FORCE_A, FORCE_B and MONITOR pins.

The outputs are an uncalibrated voltage. Notice that the FORCE_A voltage is always present.

Table 5: Force Voltage Example

Description	Address	Data	Feed	FORCE A	FORCE B	MONITOR
•	(HEX)	(HEX)	back	(V) _	(V) [–]	(V)
Software Reset	0xC001	0x0000	FORCE_A	0V	HiZ	HiZ
Con-CompA/B caps	0x8001	0x0038	FORCE_A	0V	HiZ	HiZ
IR = IR5 (512mA)	0x8002	0x000D	FORCE_A	0V	HiZ	HiZ
Vmid = 1.5V	0xC002	0x001B	FORCE_A	0V	HiZ	HiZ
VF0 Value = 3V	0x8086	0xDFFF	FORCE_A	0V	HiZ	HiZ
VF0 Offset = 0V	0x8088	0x7FFF	FORCE_A	0V	HiZ	HiZ
VF0 Gain = 1.0	0x808A	0x7FFF	FORCE_A	0V	HiZ	HiZ
Sel-Force = RT-DAC	0x8003	0x000B	FORCE_A	3V	HiZ	HiZ
Con-FA-FB	0x8006	0x000C	FORCE_A	3V	3V	HiZ
Enable Monitor in MV mode	0x8004	0x0018	FORCE_A	3V	3V	3V
(Sel-MV = FORCEA)						(MV)
Set Voltage Range = VR1.	0x8080	0x0009	FORCE_A	6V	6V	6V
(DAC code doesn't change						(MV)
so output voltage is doubled)						
Set FV = 5V	0x8086	0xBFFF	FORCE_A	5V	5V	5V
						(MV)
Put into MI mode	0x8004	0x0005	FORCE_A	5V	5V	0V
						(0uA)
Add 50 ohm resistor	N/A	N/A	FORCE_A	5V	4.9V	200mV
between FORCE_B to GND						(100mA)
Sel-FB = FORCE_B	0x8004	0x0280	FORCE_A	5.0V	4.9V	200mV
						(100mA)
Local-Sense* = 1 and	0x8005	0x00CC	FORCE_B	5.1V	5V	200mV
CPU-EN = 1						(100mA)
Connect FORCE_B to	NA	NA	FORCE_B	5.1V	5V	200mV
SENES pin		0.0000	05105	= 414	5) ((100mA)
Sel-FB = SENSE	0x8004	0x0300	SENSE	5.1V	5V	200mV
						(100mA)

The following table shows different RT-DAC (FORCE_A) output voltage DAC codes when Vmid=1.5V. These voltages don't reflect any Vcc/Vee headroom limitations.

RT-DAC Code	VR0	VR1	VR2	VR3
0x0000	-0.5	-1.0	-2.0	-4.0
0x1FFF	0.0	0.0	0.0	0.0
0x3FFF	0.5	1.0	2.0	4.0
0x5FFF	1.0	2.0	4.0	8.0
0x7FFF	1.5	3.0	6.0	16.0
0x9FFF	2.0	4.0	8.0	20.0
0xBFFF	2.5	5.0	10.0	24.0
0xDFFF	3.0	6.0	12.0	28.0
0xFFFF	3.5	7.0	14.0	32.0

