This document contains information on a product under development and the material is subject to change.
Table of Contents

1 Introduction .. 4
 1.1 Unpacking - ISL55180 EVM Contents .. 4
 1.2 Recommended Test and Measurement Setup .. 5
 1.2.1 Power Supply ... 5
 1.2.2 PC Controller ... 5
 1.2.3 DMM or Source Measurement Unit .. 5
 1.3 Software Installation ... 6
 1.3.1 ISL55180 EVM UIP Installation .. 6
 1.3.2 USB Device Driver Installation ... 6
 1.3.3 Reboot Machine .. 12
 1.3.4 Launching the Elevate Semiconductor Program .. 12
 1.3.5 Software Un-Installation .. 12

2 Getting Started .. 13
 2.1 Caution ... 13
 2.2 Quick Start Instructions ... 13
 2.2.1 Default Power Supply Option ... 13
 2.2.2 Switching Regulator Supply Option ... 15
 2.3 Default Configuration Setup Options .. 16
 2.3.1 Remote Kelvin Sense .. 16
 2.3.2 FV/MI Configuration .. 17
 2.3.3 Channel#0 and Channel#1 Ganging (Merging) Configuration .. 18
 2.3.4 All channels in Ganged (Merging) Configuration ... 19
 2.4 Motherboard Jumper and SMA Definition .. 20
 2.5 ISL55180 Loadboard Jumper Definitions ... 21
 2.6 ISL55180 EVM Menu and Dialog Boxes ... 22

3 ISL55180 EVM Loadboard Detailed Description .. 25
 3.1 ISL55180 EVM Loadboard Controller ... 26

4 Document Revision History .. 27
List of Figures
Figure 1: Installation Directory Structure.. 6
Figure 2: Expected Current Readings... 14
Figure 3: ISL55180 EVM FV/MI Simplified Block Diagram... 17
Figure 4: ISL55180 EVM Ganging Configuration Simplified Block Diagram.. 18
Figure 5: ISL55180 EVM All Channels Ganging Configuration Simplified Block Diagram......................... 19
Figure 6: Device Configuration Menu Options.. 22
Figure 7: ISL55180 Configuration Dialog Box.. 23
Figure 8: ISL55180 DC Levels Dialog Box ... 23
Figure 9: ISL55180 DAC Configuration Dialog Box.. 24
Figure 10: ISL55180 Central Register Dialog Box... 24
Figure 11: ISL55180 EVM Detailed Block Diagram... 25
Figure 12: Controller Section Detailed Block Diagram... 26

List of Tables
Table 1: ISL55180 EVM Contents .. 4
Table 2: Power Supply Requirements ... 5
Table 3: ISL55180 Default Configuration Options .. 16
Table 4: Motherboard SMA and Jumper Definitions (ISL55180 Input Signals).. 20
Table 5: Motherboard SMA Definitions (ISL55180 Output Signals) .. 20
Table 6: ISL55180 Loadboard Jumper Definitions ... 21
1 Introduction

Congratulations on your purchase of an Elevate Semiconductor ISL55180 EVM evaluation system. You will find that it serves as an invaluable development platform to help get your product to market in the shortest possible time. The ISL55180 EVM and Graphical User Interface (GUI) allow the customer to demonstrate and evaluate the ISL55180 performance and functionality.

This document provides the instructions to install, setup, and operate the ISL55180 EVM. Refer to the Elevate Semiconductor EVM User’s Guide for a detailed description of the EVM system.

1.1 Unpacking - ISL55180 EVM Contents

Please check the contents of the ISL55180 EVM shipping carton to make sure you have received all of the items listed in Table 1. The system is already configured for the best setup, except for connections to the power supply, PC controller, and test equipment.

Table 1: ISL55180 EVM Contents

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ea.</td>
<td>ISL55180 EVM System (4 boards: Motherboard, FVMI Board, ISL55180 Loadboard)</td>
</tr>
<tr>
<td>1 ea.</td>
<td>ISL55180 EVM Getting Started (this document)</td>
</tr>
<tr>
<td>1 ea.</td>
<td>CD Contents List</td>
</tr>
<tr>
<td>1 ea.</td>
<td>Elevate Semiconductor User Interface Program Installation Flash Drive</td>
</tr>
<tr>
<td>1 ea.</td>
<td>USB A/B Cable</td>
</tr>
</tbody>
</table>
1.2 Recommended Test and Measurement Setup

1.2.1 Power Supply

Table 2 provides the required power supplies and current rating. The power supplies are connected using standard banana plugs. The customer needs to provide the power supply cables.

It is recommended to use a triple supply to control the EVM supplies. This allows the 3 EVM supplies to be turned on at the same time. However, if this is not feasible, then the supplies should be enabled in the following sequence. Power down should be performed in the reverse order.

1. +20V
2. -15V
3. +5V

The ISL55180 VCCO and VEE are gated using an Opto-FET switch on the loadboard so it is safe to set and enable the ISL55180 supplies before powering up the EVM and running the software.

Table 2: Power Supply Requirements

<table>
<thead>
<tr>
<th>Module</th>
<th>Supply</th>
<th>Current Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motherboard</td>
<td>+20V</td>
<td>0.5 A</td>
</tr>
<tr>
<td>Motherboard</td>
<td>+5V (1)</td>
<td>0.5 A</td>
</tr>
<tr>
<td>Motherboard</td>
<td>-15V</td>
<td>0.5 A</td>
</tr>
<tr>
<td>ISL55180 VCCO</td>
<td>+5V (2, 3)</td>
<td>2.0 A (4)</td>
</tr>
<tr>
<td>ISL55180 VEE</td>
<td>-3V (2, 3)</td>
<td>2.0 A (4)</td>
</tr>
</tbody>
</table>

Notes:
1) The EVM +5V could also be used as the ISL55180 VCCO
2) Once the EVM operation is verified, the customer can adjust the VCCO, VEE supplies
3) Make sure the external supplies do not violate the ABS max section on the datasheet.
4) The VCCO and VEE current 2A requirements are required if all 8 channels are operating at maximum current load. If using a sub-set of channels then a smaller (i.e. 1 Amp) supply could be adequate. The program does not have the ability to measure the VCCO and VEE currents.

1.2.2 PC Controller

To use the ISL55180 EVM User Interface Program (UIP), a PC with the following configuration is required:

- USB Port (a USB cable is provided)

1.2.3 DMM or Source Measurement Unit

- Voltage and/or Current Meter
- Voltage and/or Current Source
1.3 Software Installation

There are 2 steps to install the ISL55180 EVM demonstration program.

1. Install the ISL55180 EVM UIP from the Flash Drive.
2. Install the USB driver.

Figure 1 illustrates the default directory structure. The user may change the <root dir> during the installation.

![Installation Directory Structure](image)

1.3.1 ISL55180 EVM UIP Installation

To install the ISL55180 EVM software package, run the SETUP program on the distribution Flash Drive and follow the prompts. The ElevATE.exe executable will be installed in the EVM GUI sub-directory. In addition, a short cut will be installed onto the desktop and in the Start->Programs folder. The Start->Programs folder also contains links to the different EVM User's Guide, and documentation folders.

1.3.2 USB Device Driver Installation

Follow section 1.3.2.1 for installation instructions on the Windows 10/8 operating systems, section 1.3.2.2 for instructions for Windows 7, or section 1.3.2.3 for Windows XP

1.3.2.1 Window 10/8

To install the USB driver on Windows 10/8, the Driver Signature Verification needs to be disabled. This is accomplished using the following method.

1.3.2.1.1 Enter the Troubleshoot menu. Click “Restart” from the power options menu and hold down the “Shift” key at the same time. Once the computer has rebooted, you will be able to choose the Troubleshoot option.
1.3.2.1.2 Select “Advanced options” and “Startup Settings”.

1.3.2.1.3 You need to restart your computer one last time to modify boot time configuration settings.

1.3.2.1.4 You will be given a list of startup settings, including “Disable driver signature enforcement”. To choose the setting, you need to press the “F7” key. This will disable the driver signature enforcement until the computer is rebooted.
1.3.2.1.5 Continue with section 1.3.2.2 to finish installation of USB driver except choose the windows 10 or windows 8 option.

1.3.2.2 Windows 7
To install the USB device driver on a Windows 7 system, connect the “USB FX2 to Parallel” board to a USB port using the included USB A/B cable. The “USB FX2 to Parallel” board does not need any external power or need to be connected to any other board for the device driver installation.

1.3.2.2.1 After connecting the USB cable from the PC to the “USB FX2 to Parallel” board, navigate to the Device Manager screen on your computer and look for the EZ-USB Icon. Right-Click on the EZ-USB Icon and select “Update Drive Software...”
1.3.2.2.2 Select “Browse my computer for driver software”.

![Driver Software Selection]

1.3.2.2.3 Install driver from the newly installed folder on your computer:
 Windows 7: `\ElevATE Semi\EVM GUI\Elevate USB Driver\win7\(x64 or x86)
 Select x64 for a 64-bit system.
 Select x86 32-bit system.

 Select “Next”. The USB driver will be installed.
1.3.2.3 Windows XP

To install the USB device driver on a Windows XP system, connect the “USB FX2 to Parallel” board to a USB port using the included USB A/B cable. The USB FX2 to Parallel board does not need any external power or need to be connected to any other board for the device driver installation.

1.3.2.3.1 After connecting the USB cable from the PC to the “USB FX2 to Parallel” board, the following window appears. Select “No, not this time” and click Next.
1.3.2.3.2 Choose “Install from a list or specific location (Advanced)” and click Next.

This wizard helps you install software for:

USB Device

If your hardware came with an installation CD or floppy disk, insert it now.

What do you want the wizard to do?

- Install the software automatically (Recommended)
- Install from a list or specific location (Advanced)

Click Next to continue.

1.3.2.3.3 Select the top radio button, and check “Include this location in the search.” Type the following path into the text box.

Windows XP: \ElevATE Semi\EVM GUI\Elevate USB Driver\wxp\(x64 or x86)

Select x64 for a 64-bit system.
Select x86 32-bit system.
Select “Next”. The USB driver will be installed.
1.3.3 Reboot Machine

After the ISL55180 EVM and USB software is installed, it may be required to re-boot the machine.

1.3.4 Launching the Elevate Semiconductor Program

The user can launch the Elevate Semiconductor GUI from the Desktop, Start->Programs folder, or EVM GUI sub-directory.

1.3.5 Software Un-Installation

The Elevate Semiconductor demonstration program may be un-installed using the Add/Remove Program from the Windows Control Panel.
2 Getting Started

The ISL55180 EVM is shipped in a pre-configured state that allows a customer to evaluate the DPS Force Voltage/Measure Current (FV/MI), Ganging and other features.

Note: Any external equipment providing digital signals into the ISL55180 device should only be enabled after the ISL55180 EVM is enabled. Also, the external equipment should be disabled prior to disabling the ISL55180 EVM.

2.1 Caution

The ISL55180 DUT Power Supply (DPS) is capable of delivering several amps of current. Configuring the ISL55180 device and EVM into an extremely high power condition could cause permanent damage to the ISL55180 device, EVM components, and/or external equipment.

2.2 Quick Start Instructions

2.2.1 Default Power Supply Option

1. Disable external power supply
2. Connect the power supplies cables (not provided) from the power supply to the Elevate Semiconductor EVM Motherboard and ISL55180 loadboard; refer to Figure 3.
3. Connect the USB cable (provided) from the PC to the USB port on the “USB FX2 to Parallel” board.
4. Connect the EVM to any external equipment; refer to Section 2.3.
5. Setup Motherboard Jumpers; refer to Section 2.4
6. Ensure Jumpers E4 and E5 are installed on the loadboard.
7. Ensure Jumpers E2 and E3 are shorting pins 1 and 2 (towards back of board).
8. Set external power supply voltages and current limits.
9. Enable external power supply.
10. Run the Elevate Semiconductor GUI software; refer to Section 1.3.4 for details.
11. At the Force Voltage – Measure Current dialog box (refer to Figure 2 below):
 a. Select the **EVM Setup** option based on the desired configuration, see Section 2.3
 b. Select the **Enable Supplies** check box
 c. Hit the **Apply** button to power up the ISL55180 device.
 d. The software will also measure the current consumption. Figure 2 illustrates the expected current readings.
12. At this point, the ISL55180 should be outputting the desired signal.
The **Reset System** will put the EVM and ISL55180 device into the default state. The **Reset System** should be issued whenever the power supply is powered OFF then ON. The **Reset System** is automatically performed when the program is initially launched.
2.2.2 Switching Regulator Supply Option

This option uses the ISL8540 Switching regulator to power the VCCO supply on the ISL55180. This option is not required for operation.

1. Disable external power supply
2. Connect the power supplies cables (not provided) from the power supply to the Elevate Semiconductor EVM Motherboard and ISL55180 loadboard; refer to Figure 3.
3. Connect the USB cable (provided) from the PC to the USB port on the "USB FX2 to Parallel" board.
4. Connect the EVM to any external equipment; refer to Section 2.3.
5. Setup Motherboard Jumpers; refer to Section 2.4
6. **Remove Jumpers E4 and E5** from loadboard.
7. Ensure Jumpers E2 and E3 are shorting pins 1 and 2 (towards back of board).
8. Set external power supply voltages and current limits (VCCO must be at least 9V to enable the Switching Regulator).
9. Enable external power supply.
10. Run the Elevate Semiconductor GUI software; refer to Section 1.3.4 for details.
11. At the Force Voltage – Measure Current dialog box (refer to Figure 2 above):
 a. Select the **EVM Setup** option based on the desired configuration, see Section 2.3
 b. Select the **Enable Supplies** check box
 c. Select the **Enable Switcher** check box
 d. Hit the **Apply** button to power up the ISL55180 device.
 e. The software will also measure the current consumption. Figure 2 illustrates the expected current readings.
12. At this point, the ISL55180 should be outputting the desired signal.
13. To change the switcher voltage, type in a voltage in the VCCOA or VCCOB text box and hit the **Apply** button. The regulator will output the closest approximate voltage.
2.3 Default Configuration Setup Options

The EVM has several default options for configuring for device and loadboard.

Table 3: ISL55180 Default Configuration Options

<table>
<thead>
<tr>
<th>Mode</th>
<th>See Section #</th>
<th>Brief Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Reset</td>
<td>N/A</td>
<td>All registers default to the hardware default state.</td>
</tr>
<tr>
<td>Three-State (High-Z)</td>
<td>N/A</td>
<td>Puts DPS in three-state (high-Z). Opens all switches.</td>
</tr>
<tr>
<td>FV/MI (default)</td>
<td>2.3.2</td>
<td>All Channels configured in FV/MI mode with I-Clamps disabled. VFA = 3.0V, IR5, Sel-FB = SENSE, Con-FS = 1. Ch#0 FORCE and SENSE connected to TEST_NODE. Ch#1 FORCE connected to TEST_NODE.</td>
</tr>
<tr>
<td>Ch#0/1 Ganging</td>
<td>2.3.3</td>
<td>All Channels (except Ch#1) configured in FV/MI mode with I-Clamps disabled. Ch#1 configured into FV-Slave mode Ch#0 VFA = 3.0V, IR5, Sel-FB = SENSE, Con-FS = 1. Ch#0 FORCE and SENSE connected to TEST_NODE. Ch#1 FORCE connected to TEST_NODE.</td>
</tr>
<tr>
<td>Ch#0-7 Ganging</td>
<td>2.3.4</td>
<td>Ch#0 configured in FV/MI mode with I-Clamps disabled. Channels#1-7 configured into FV-Slave mode Ch#0 VFA = 3.0V, IR5, Sel-FB = SENSE, Con-FS = 1. Ch#0 FORCE and SENSE connected to TEST_NODE. Channel#1-7 FORCE connected to TEST_NODE.</td>
</tr>
</tbody>
</table>

2.3.1 Remote Kelvin Sense

Caution should be used when configuring the feedback (SENSE) path to ensure the DPS does not become open loop. The software defaults the CPU-Sel-FB = 2 (SENSE) and Con-FS# = 1 (closed) to ensure the loop is closed. After connecting any external equipment to the FORCE/SENSE SMAs (or TEST_NODE), the user can then set Con-FS#=0 (open) to provide remote Kelvin sensing.
2.3.2 FV/MI Configuration

Figure 3 illustrates the recommended configuration for FV/MI (Force Voltage/Measure Current). After the configuration is completed, use the ISL55180->Channel#0->Levels dialog box to change the ISL55180 output levels. Use the ISL55180 Loadboard dialog box to connect other channels to the TEST_NODE.

Both MI_MONITOR and MONITOR are configured to output Channel#0 MI-S

If using an external source measurement unit (SMU), the SMU should be configured in the opposite mode as ISL55180.

<table>
<thead>
<tr>
<th>ISL55180</th>
<th>SMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>FV/MI</td>
<td>FI/MV</td>
</tr>
<tr>
<td>FI/MV</td>
<td>FV/MI</td>
</tr>
</tbody>
</table>

Figure 3: ISL55180 EVM FV/MI Simplified Block Diagram
2.3.3 Channel#0 and Channel#1 Ganging (Merging) Configuration

Figure 4 illustrates the recommended configuration for the ganging application. Channel#0 is configured in FV mode (Master) in Remote Sense while Channel#1 is configured in FV (Slave) mode. Both Channel#0 and Channel#1 FORCE pins are connected to the TEST_NODE SMA. Channel#0 SENSE is also connected to TEST_NODE which provides the remote Kelvin Sense return path.

The MI_MONITOR is configured to output the Channel#0 MI-S. The MONITOR is configured to output the Channel#1 MI-S.

Channels 2-7 are configured in FV/MI mode.

Figure 4: ISL55180 EVM Ganging Configuration Simplified Block Diagram
2.3.4 All channels in Ganged (Merging) Configuration

5 illustrates the recommended configuration for the ganging application of all channels. Channel#0 is configured in FV mode (Master) in Remote Sense while Channels#1-7 are configured in FV (Slave) mode. Channel#0-7 FORCE pins are connected to the TEST_NODE SMA. Channel#0 SENSE is also connected to TEST_NODE which provides the remote Kelvin Sense return path.

The MI_MONITOR is configured to output the Channel#0 MI-S. The MONITOR is configured to output the Channel#1 MI-S.

Channels 2-7 are configured in FV/MI mode.

Figure 5: ISL55180 EVM All Channels Ganging Configuration Simplified Block Diagram
2.4 **Motherboard Jumper and SMA Definition**

Table 4 lists the Motherboard Jumper/SMA definitions for the ISL55180 EVM.

<table>
<thead>
<tr>
<th>TC#</th>
<th>Jumper</th>
<th>Usage</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC30</td>
<td>E12</td>
<td>PLL_CK (Fsync)</td>
<td>Short Pin 1 & 2. towards back of board</td>
</tr>
<tr>
<td>TC29</td>
<td>E11</td>
<td>PLL_CK* (Fsync)</td>
<td>Short Pin 1 & 2. towards back of board</td>
</tr>
<tr>
<td>TC28</td>
<td>E14</td>
<td>TJ (V)</td>
<td>Short Pin 2 & 3. towards front of board</td>
</tr>
<tr>
<td>TC27</td>
<td>E15</td>
<td>EXT_MON_OE</td>
<td>Short Pin 1 & 2. towards back of board</td>
</tr>
<tr>
<td>TC26</td>
<td>E2</td>
<td>EN</td>
<td>Short Pin 1 & 2: source from latch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short Pin 2 & 3: source from SMA</td>
</tr>
<tr>
<td>TC25</td>
<td>E10</td>
<td>DATA_7</td>
<td>Short Pin 1 & 2: source from latch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short Pin 2 & 3: source from SMA</td>
</tr>
<tr>
<td>TC24</td>
<td>E9</td>
<td>DATA_6</td>
<td>Short Pin 1 & 2: source from latch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short Pin 2 & 3: source from SMA</td>
</tr>
<tr>
<td>TC23</td>
<td>E8</td>
<td>DATA_5</td>
<td>Short Pin 1 & 2: source from latch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short Pin 2 & 3: source from SMA</td>
</tr>
<tr>
<td>TC22</td>
<td>E7</td>
<td>DATA_4</td>
<td>Short Pin 1 & 2: source from latch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short Pin 2 & 3: source from SMA</td>
</tr>
<tr>
<td>TC21</td>
<td>E1</td>
<td>LB_RCK</td>
<td>Short Pin 1 & 2. towards back of board</td>
</tr>
<tr>
<td>TC20</td>
<td>E6</td>
<td>DATA_3</td>
<td>Short Pin 1 & 2: source from latch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short Pin 2 & 3: source from SMA</td>
</tr>
<tr>
<td>TC19</td>
<td>E5</td>
<td>DATA_2</td>
<td>Short Pin 1 & 2: source from latch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short Pin 2 & 3: source from SMA</td>
</tr>
<tr>
<td>TC18</td>
<td>E4</td>
<td>DATA_1</td>
<td>Short Pin 1 & 2: source from latch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short Pin 2 & 3: source from SMA</td>
</tr>
<tr>
<td>TC17</td>
<td>E3</td>
<td>DATA_0</td>
<td>Short Pin 1 & 2: source from latch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short Pin 2 & 3: source from SMA</td>
</tr>
<tr>
<td>TC16</td>
<td>E13</td>
<td>N/A</td>
<td>Don’t care</td>
</tr>
<tr>
<td>TC15</td>
<td>E20</td>
<td>N/A</td>
<td>Don’t care</td>
</tr>
</tbody>
</table>

The following table defines the ISL55180 output signals. These are always present at the motherboard SMAs.

<table>
<thead>
<tr>
<th>TC#</th>
<th>MB EVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC14</td>
<td>OT*</td>
</tr>
<tr>
<td>TC13</td>
<td>ALARM*</td>
</tr>
<tr>
<td>TC12</td>
<td>Unused</td>
</tr>
<tr>
<td>TC11</td>
<td>Unused</td>
</tr>
<tr>
<td>TC9</td>
<td>GANG7_OUT</td>
</tr>
<tr>
<td>TC8</td>
<td>GANG5_OUT</td>
</tr>
<tr>
<td>TC6</td>
<td>GANG3_OUT</td>
</tr>
<tr>
<td>TC5</td>
<td>GANG1_OUT</td>
</tr>
</tbody>
</table>
2.5 **ISL55180 Loadboard Jumper Definitions**

Table 4 lists the ISL55180 Loadboard Jumper definitions.

Table 6: **ISL55180 Loadboard Jumper Definitions**

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Description</th>
<th>Default Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Connect VFORCE</td>
<td>Installed</td>
</tr>
<tr>
<td>E2</td>
<td>VCCO Select</td>
<td>Pin 1 & 2. Select BN1</td>
</tr>
<tr>
<td>E3</td>
<td>VEE Select</td>
<td>Pin 1 & 2. Select BN2</td>
</tr>
<tr>
<td>E4</td>
<td>Switcher A Bypass</td>
<td>Installed (switcher bypassed)</td>
</tr>
<tr>
<td>E5</td>
<td>Switcher B Bypass</td>
<td>Installed (switcher bypassed)</td>
</tr>
</tbody>
</table>
2.6 ISL55180 EVM Menu and Dialog Boxes

Error! Reference source not found. illustrates the ISL55180 EVM menu options that provide access to the ISL55180 dialog boxes. For each ISL55180 register, there is a control field allowing the customer to have full control over the ISL55180 device. These screen shots show the default *FV/MI* configuration.

Figure 6: Device Configuration Menu Options
Figure 7: ISL55180 Configuration Dialog Box

Figure 8: ISL55180 DC Levels Dialog Box
Figure 9: ISL55180 DAC Configuration Dialog Box

Figure 10: ISL55180 Central Register Dialog Box
3 ISL55180 EVM Loadboard Detailed Description

Error! Reference source not found. illustrates the ISL55180 EVM EVM loadboard. Almost all of the circuitry is used to test, validate and demonstrate in the bench. Besides decoupling caps, the only external components required are the 10K resistor connected to REXT and the CAP_A, CAP_B & CAP_VDD compensation caps.

Figure 11: ISL55180 EVM Detailed Block Diagram
3.1 ISL55180 EVM Loadboard Controller

Error! Reference source not found. illustrates the ISL55180 EVM controller section. The ISL55180 EVM loadboard contains nine 8-bit latches (registers), a 16K EEPROM, and a Digitally Controlled Potentiometer (DCP). The CBit1 to CBit7 are also used to control various relays, the C-Bit# are open-drain outputs used to control relays. The C-Bits originate from the Octal FVMI board.

The latches are daisy chained together using the SDI_SCK/RCK/CS signals originating from the Motherboard. The EEPROM is controlled by the LPORT1_OUT[4:2] signals originating from the motherboard. The DCP is controlled by LPORT1_OUT4/2 and LB_DATA3 signals originating from the motherboard.

The loadboard latches are labeled STB_I to STB_Q. This was named as an extension to the REG_A to REG_H Octal FVMI / Motherboard registers.

Figure 12: Controller Section Detailed Block Diagram
Document Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06</td>
<td>8/30/2018</td>
<td>Add Windows 8/10 installation instructions.</td>
</tr>
<tr>
<td>A05</td>
<td>6/24/2014</td>
<td>Add USB functionality.</td>
</tr>
<tr>
<td>A04</td>
<td>6/18/12</td>
<td>Updated several figures.</td>
</tr>
<tr>
<td>A03</td>
<td>2/27/12</td>
<td>Updated document.</td>
</tr>
<tr>
<td>A02</td>
<td>1/27/10</td>
<td>Add loadboard changes and switcher section</td>
</tr>
<tr>
<td>A01</td>
<td>9/24/09</td>
<td>Initial Draft.</td>
</tr>
</tbody>
</table>