Mercury/ISL55169 EVM Getting Started

Rev B06: 03/13/2019

This document contains information on a product under development. The parametric information contains target parameters that are subject to change.

Table of Contents

1	Intr	troduction4			
	1.1	1.1 Unpacking - Mercury/ISL55169 Contents4			
	1.2	Recommended Test and Measurement Setup	5		
	1.2.	1 Power Supply	5		
	1.2.2	2 PC Controller	5		
	1.3	Software Installation6	5		
	1.3.	1 Mercury EVM UIP Installation6	5		
	1.3.	2 USB Device Driver Installation	5		
	1.3.	3 Reboot Machine	2		
	1.3.4	4 Launching the Mercury EVM Program12	2		
	1.3.	5 Software Un-Installation	2		
2	Gett	ing Started	3		
	2.1	Loadboard and Motherboard Revisions13	3		
	2.1.	1 Motherboard Rev C+ PLL_CK Option	3		
	2.2	Default Configuration Setup Options14	1		
	2.2.	1 Real Time Data & Comparator Inputs	5		
	2.2.2	2 Ring Oscillator Mode (No Pulse Generator)16	5		
	2.2.	3 PMU Force Voltage or Force Current Modes	7		
	2.3	Quick Start Instructions18	3		
	2.4	Motherboard Jumper and SMA Definitions)		
	2.5	Mercury Menu Dialog Boxes)		
3	Mer	cury Loadboard Detailed Description21	l		
	3.1	Resistor Network Definitions	2		
	3.2	ADC and Analog Mux	2		
	3.3	Controller Logic	3		
,	 D		_		
4	Doc	ument Revision History	Document Revision History		

List of Figures

Figure 1:	Installation Directory Structure	6
Figure 2:	Real Time DATA Block Diagram	15
Figure 3:	Ring Oscillator Block Diagram	16
Figure 4:	PMU FV/FI Block Diagram	17
Figure 5:	Expected Current Readings	18
Figure 6:	Device Config Menu Options	20
Figure 7:	Mercury EVM Detailed Block Diagram	21
Figure 8:	Mercury EVM Resistor Network Block Diagram	22
Figure 9:	Mercury EVM Controller Section Detailed Block Diagram	23
-		

List of Tables

4
5
. 19
. 19
. 22
.24
. 24
. 25
. 25
.25
.25
. 26
.26

1 Introduction

Congratulations on your purchase of an Elevate Semiconductor Mercury/ISL55169 EVM evaluation system. For the remainder of this document, the Mercury/ISL55169 will be referred to as just Mercury. You will find that it serves as an invaluable development platform to help get your product to market in the shortest possible time. The Mercury EVM and Graphical User Interface (GUI) allow the customer to demonstrate and evaluate the Mercury performance and functionality.

This document provides the instructions to install, setup, and operate the Mercury EVM. Refer to the *Elevate Semiconductor EVM User's Guide* for a detailed description of the EVM system.

1.1 Unpacking - Mercury/ISL55169 Contents

Please check the contents of the Mercury EVM shipping carton to make sure you have received all of the items listed in Table 1. The system is already configured for the best setup, except for connections to the power supply, PC controller, and test equipment.

Table 1: Mercury EVM Contents

Qty	Description	
1 ea.	Mercury EVM System (3 boards: Motherboard, FVMI Board, ISL55169	
	Loadboard)	
1 ea.	Mercury EVM Getting Started (this document)	
1 ea.	EVM Contents List	
1 ea.	Mercury EVM User Interface Program Installation CD	
1 ea.	USB A/B Cable	

1.2 Recommended Test and Measurement Setup

Oscilloscope, Differential Pulse Generators, DMMs, and Source Measure Unit

1.2.1 Power Supply

Table 2 provides the required power supplies and current rating. The power supplies are connected using standard banana plugs. The customer needs to provide the power supply cables.

Table 2: Power Supply Requirements

Supply	Current Rating
+20V	1 A
+5V	1 A
-15V	1 A

1.2.2 PC Controller

To use the Mercury/ISL55169 User Interface Program (UIP), a PC with the following configuration is required:

- Windows XP, Windows 2007, Windows 2008, Window 2010
- USB Port (a USB cable is provided)

1.3 <u>Software Installation</u>

There are 2 steps to install the Mercury/ISL55169 demonstration program.

- 1. Install the Mercury EVM UIP from the Flash Drive.
- 2. Install the USB driver.

Figure 1 illustrates the default directory structure. The user may change the <root dir> during the installation.

Figure 1: Installation Directory Structure

- 📕 EVM GUI
- ISL55180 Docs
- Jupiter Docs
- Mercury-ISL55169 Docs
- Neptune-ISL55187 Docs
- Pluto Docs
- Saturn-ISL55188 Docs
- Shared Docs
- 📜 Triton-ISL55185 Docs
- Venus Family ISL55161-4 Docs
- 📕 Vesuvius Docs
- 📆 EVM_CD_Contents_List.pdf
- 📔 Readme.txt

1.3.1 Mercury EVM UIP Installation

To install the Mercury/ISL55169 software package, run the SETUP program on the distribution Flash Drive and follow the prompts. The **ElevATE.exe** executable will be installed in the **EVM GUI** subdirectory. In addition, a short cut will be installed onto the desktop and in the **Start->Programs** folder. The **Start->Programs** folder also contains links to the different EVM User's Guide, and documentation folders.

1.3.2 USB Device Driver Installation

Follow section 1.3.2.1 for installation instructions on the Windows 10/8 operating systems, section 1.3.2.2 for instructions for Windows 7, or section 1.3.2.3 for Windows XP

1.3.2.1 Window 10/8

To install the USB driver on Windows 10/8, the Driver Signature Verification needs to be disabled. This is accomplished using the following method.

1.3.2.1.1 Enter the Troubleshoot menu. Click "Restart" from the power options menu and hold down the "Shift" key at the same time. Once the computer has rebooted, you will be able to choose the Troubleshoot option.

1.3.2.1.2 Select "Advanced options" and "Startup Settings".

Ad	Va	anced options	5	
4	•	System Restore Use a restore point recorded on your PC to restore Windows	۵	Startup Settings Change Windows startup behavior
<0	>	Startup Repair Fix problems that keep Windows from loading		

1.3.2.1.3 You need to restart your computer one last time to modify boot time configuration settings.

1.3.2.1.4 You will be given a list of startup settings, including "Disable driver signature enforcement". To choose the setting, you need to press the "F7" key. This will disable the driver signature enforcement until the computer is rebooted.

1.3.2.1.5 Continue with section 1.3.2.2 to finish installation of USB driver except choose the windows 10 or windows 8 option for the driver.

1.3.2.2 Windows 7

To install the USB device driver on a Windows 7 system, connect the USB port using the included USB A/B cable. The USB port does not need any external power or need to be connected to any other board for the device driver installation.

1.3.2.2.1 After connecting the USB cable to the USB port, navigate to the Device Manager screen on your computer and look for the EZ-USB Icon. Right-Click on the EZ-USB Icon and select "Update Drive Software..."

Copyright © Elevate Semiconductor

1.3.2.2.2 Select "Browse my computer for driver software".

1.3.2.2.3 Install driver from the newly installed folder on your computer:

Windows 7: \ElevATE Semi\EVM GUI\Elevate USB Driver\wlh-win7\(x64 or x86) Select x64 for a 64-bit system. Select x86 32-bit system.

Select "Next". The USB driver will be installed.

0	Update Driver Software - EZ-USB	×
	Browse for driver software on your computer	
[Search for driver software in this location: C:\ElevATE Semi\EVM GUI\Elevate USB Driver\wlh-win7\x64 Jnclude subfolders	
	Let me pick from a list of device drivers on my computer This list will show installed driver software compatible with the device, and all driver software in the same category as the device.	
	Next Ca	incel

1.3.2.3 Windows XP

To install the USB device driver on a Windows XP system, connect the USB port using the included USB A/B cable. The USB port does not need any external power or need to be connected to any other board for the device driver installation.

1.3.2.3.1 After connecting the USB cable from the PC to the USB port, the following window appears. Select "No, not this time" and click Next.

Found New Hardware Wizard		
	Welcome to the Found New Hardware Wizard Windows will search for current and updated software by looking on your computer, on the hardware installation CD, or on the Windows Update Web site (with your permission). Read our privacy policy	
	Can Windows connect to Windows Update to search for software? O Yes, this time only O Yes, now and every time I connect a device O No, not this time Click Next to continue.	
	< <u>B</u> ack. <u>N</u> ext > Cancel	

1.3.2.3.2 UNOOSE II	install from a list of specific location (Auvanceu) and click				
Found New Hardware Wizard					
	This wizard helps you install software for: USB Device If your hardware came with an installation CD or floppy disk, insert it now. What do you want the wizard to do? Install the software automatically (Recommended) Install from a list or specific location (Advanced) Click Next to continue.				
	< <u>B</u> ack <u>N</u> ext > Cancel				

1.3.2.3.2 Choose "Install from a list or specific location (Advanced)" and click Next.

1.3.2.3.3 Select the top radio button, and check "Include this location in the search." Type the following path into the text box.

Windows XP: \ElevATE Semi\EVM GUI\Elevate USB Driver\wxp\(x64 or x86)

Select x64 for a 64-bit system. Select x86 32-bit system. Select "Next". The USB driver will be installed.

 $Copyright \ \textcircled{o} \ Elevate \ Semiconductor$

Hardware Update Wizard			
Please choose your search and installation options.			
Search for the best driver in these locations.			
Use the check boxes below to limit or expand the default search, which includes local paths and removable media. The best driver found will be installed.			
Search removable media (floppy, CD-ROM)			
✓ Include this location in the search:			
C:\Elevate Semi\EVM GUI\ElevATE USB Driver\wx 💌 Browse			
C Don't search. I will choose the driver to install.			
Choose this option to select the device driver from a list. Windows does not guarantee that the driver you choose will be the best match for your hardware.			
< <u>B</u> ack <u>Next</u> > Cancel			

1.3.3 Reboot Machine

After the Mercury EVM and USB software is installed, it is recommended to re-boot the machine.

1.3.4 Launching the Mercury EVM Program

The user can launch the Mercury EVM GUI from the desktop, **Start->Programs** folder, or *EVM GUI* subdirectory.

1.3.5 Software Un-Installation

The Mercury EVM demonstration program may be un-installed using the **Add/Remove Program** from the Windows Control Panel.

2 Getting Started

The Mercury EVM is shipped in a pre-configured state that allows a customer to evaluate the basic driver and comparator output performance as well as the PMU Force Voltage (FV) / Force Current (FI) modes.

Note: Any external equipment providing digital signals into Mercury should only be enabled after the Mercury EVM is enabled. Also, the external equipment should be disabled prior to disabling the Mercury EVM.

2.1 Loadboard and Motherboard Revisions

This document only supports the Loadboard Rev F+ and the Motherboard Rev D+.

For earlier Loadboard & Motherboard revisions, please contact Elevate Semiconductor for the appropriate documentation.

2.1.1 Motherboard Rev C+ PLL_CK Option

The Motherboard Rev C+ contains a differential clock generator.

• Short E11 & E12 (on Motherboard) between Pin 1-2 (towards rear of board)

The software automatically detects if the PLL is present. Use the *EVM Config->FVMI Configuration* dialog box to set the desired PLL frequency. The PLL can operate from 25 MHz to 175 MHz in 3.25 MHz steps.

2.2 Default Configuration Setup Options

The EVM has several default options for providing a DATA stream and/or configuring for PMU mode.

Mode	Brief Description	Reference
Hardware Reset	All registers default to the hardware default state.	None
Three-State (High-Z)	Puts Mercury Driver and PMU in three-state (high-Z).	None
Real Time Data (default)	Use motherboard DATA# SMA connectors	Section 2.2.1
Ring Oscillator Mode	Use Mercury's internal Ring Oscillator.	Section 2.2.2
	Only Chan#0 is triggered.	
PMU FV Chan #0	Configures PMU into FV mode outputting 1.5V and connects to	Section 2.2.3
	Channel #0	
PMU FV All GND Force	Configures PMU into FV mode outputting 0.0 V and connects to	Section 2.2.3
	all channels	
PMU FI Chan #0	Configures PMU into FI mode outputting 0uA and connects to	Section 2.2.3
	Channel #0	

2.2.1 Real Time Data & Comparator Inputs

Figure 2 illustrates the recommended EVM configuration. This option sources the DATA# from the motherboard SMA connectors. The ENABLE# is set to CPU Control and high (always enabled). The DATA# input term is set to High (open). The VBB is connected to the VOH supply which defaults to 2.0V; therefore the customer must ensure their input signal swings across 2.0V.

- Channel #0: Short E3 & E4 (on Motherboard) between Pin 2-3 (towards front of board)
- Channel #0: Connect pulse generator to DATA_# SMA connectors (on Motherboard)

Notes

- Channel #1 to #3 could be configured in a similar fashion; not shown in diagram. To evaluate Chan #4 to #7, set the Digital Bank Select in the EVM Config->Pluto/Mercury EVM Config dialog box.
- 2) To evaluate the Comparator Inputs (not shown in diagram)
 - a. Connect the pulse generator to the DIN signal.
 - b. In the **Mercury->Channel #->Driver/Comparator Config** dialog box: set the **Con-DIN-Comp** switch and clear the **Con-DOUT-Comp** switch.

Figure 2: Real Time DATA Block Diagram

2.2.2 Ring Oscillator Mode (No Pulse Generator)

Figure 3 illustrates the recommended configuration for customers without any pulse generator. This option uses the Mercury Ring Oscillator feature to generate a \sim 20 MHz pulse with a \sim 15 nS period. Setup the scope to trigger on DOUT_0.

Note: With Mercury Rev 2, the Ring Oscillator is not reliable when a PLL_CK is not present.

2.2.3 PMU Force Voltage or Force Current Modes

Figure 4 illustrates the recommended configuration for PMU FV/FI evaluation. The external measurement unit (MU) should be configured in the opposite mode as Mercury. After the configuration is completed, use the **PMU FV/FI Levels** dialog box the change the Mercury output levels.

Mercury	MU
FVMI	FIMV
FIMV	FVMI

Figure 4: PMU FV/FI Block Diagram

2.3 Quick Start Instructions

- 1. Disable external power supply
- 2. Connect the power supplies cables (not provided) from the power supply to the Elevate Semiconductor EVM Motherboard.
- 3. Connect the USB cable (provided) from the PC to the USB port on the "USB FX2 to Parallel" board.
- 4. Connect the EVM to any external equipment; refer to Section 2.2.
- 5. Setup Motherboard Jumpers; refer to Section 2.4
- 6. Set external power supply voltages and current limits.
- 7. Enable external power supply.
- 8. Run the Elevate Semiconductor GUI software, refer to Section 1.3.4 for details.
- 9. At the Force Voltage Measure Current dialog box (refer to Figure 5 below):
 - a. Select the **EVM Setup** option based on the desired configuration.
 - b. Select the **Enable Supplies** check box
 - c. Hit the Apply button to power up the Mercury device.
 - d. The software will also measure the current consumption. Figure 5 illustrates the expected current readings.
- 10. Enable the external DATA source (if running real-time data)
- 11. At this point, the Mercury Driver and Comparator should be outputting the desired signal.

Figure 5: Expected Current Readings

Force Voltage - Measure Current (FVMI) Configuation						
Revision Mercury Rev4 LB SN = 30 FVMI SN = 103 Device Options EVM Setup Real Only a	Reset Reset System Time Data pplied when supplied	Must issue when cycled on board system into defa	ever power is d. Will put ult state. alibrate <u>D</u> AC alibrate <u>L</u> evels ed state	PLL Freq (MHz) PLL_CK 50.000 CLK_REF 25.000 Apply <u>P</u> LL_CK PLL Present	<u>Apply</u> <u>Cancel</u> ✓ <u>Enable</u> Supplies	
- Power Amplifiers -	Desired Voltage	Meas Voltage	Current (mA)	Power (mW)		
Chan 1 (VCCH) (+8.0 to +15.0)	13.000	13.000	61.5	798.9		
Chan 2 (VCC) (+0.0 to +10.0)	8.000	8.002	36.0	288.3		
Chan 3 (VDD) (0.0 to +5.0)	3.300	3.302	376.3	1242.7		
Chan 4 (VEE) (-5.0 to +0.0)	-3.000	-2.998	-109.7	329.0		
Chan 5 (VOH) (+1.0 to +3.3)	2.000	2.001	0.1	0.2		
Chan 6 (VOL) (-0.5 to +1.0)	0.000	0.001	-0.1	0.0		
Chan 7 (VREF) (+2.5 to +3.5)	3.000	3.001	0.0	0.0		
	Perform Range	2 Check	Total F	Dower 2659.5	<u>M</u> easure	

The **Reset System** will put the EVM and Mercury device into the default state. The **Reset System** should be issued whenever the power supply is powered OFF then ON. The **Reset System** is automatically performed when the program is initially launched.

2.4 Motherboard Jumper and SMA Definitions

Table 3 lists the Motherboard Jumper definitions for the Mercury EVM. The silkscreen varies depending on the motherboard revision.

MB Rev A/B/C Silkscreen	MB Rev D+ Silkscreen	Mercury Usage	Jumper	Configuration
PLL_CK	TC_30	PLL_CK	E12	See Section Error! Reference source not found.
PLL_CKB	TC_29	PLL_CKB	E11	See Section Error! Reference source not found.
EXT_FORCE	TC_28	SDI_DATA	E14	Short Pin 1 & 2. Towards back of board
EXT_SENSE	TC_27	SDI_SCK	E15	Short Pin 1 & 2. Towards back of board
SV1	TC_26	SDI_RCK	E2	Short Pin 1 & 2. Towards back of board
ENN1	TC_25	EN_3/7	E10	As desired
EN1	TC_24	EN_2/6	E9	As desired
DATAN1	TC_23	DATA_3/7	E8	As desired
DATA1	TC_22	DATA_2/6	E7	As desired
SV0	TC_21	DIG_BANK_SEL	E1	Short Pin 1 & 2. Towards back of board
ENN0	TC_20	EN_1/5	E6	As desired
EN0	TC_19	EN_0/4	E5	As desired
DATAN0	TC_18	DATA_1/5	E4	As desired
DATA0	TC_17	DATA_0/4	E3	As desired
DUT_GND1	TC_16	TC_16	E13	Open
DUT_GND0	TC_15	TC_15	E20	Open

Table 3: Motherboard Jumper Definitions

Table 4: Motherboard SMA Definitions

MB Rev A/B/C	MB Rev D+	Mercury
Silkscreen	Silkscreen	Usage
COMPBN1	TC14	COMPA3/7
COMPB1	TC13	COMPB3/7
COMPAN1	TC12	COMPA2/6
COMPA1	TC11	COMPB2/6
COMPBN0	TC9	COMPA1/5
COMPB0	TC8	COMPB1/5
COMPAN0	TC6	COMPA0/4
COMPA0	TC5	COMPB0/4

2.5 <u>Mercury Menu Dialog Boxes</u>

Figure 6 illustrates the Mercury menu options. These provide access to the Mercury registers.

Figure 6:	Device	Config	Menu	Options
-----------	--------	--------	------	---------

PlanetATE Evaluation Program		
File Edit View EVM Config Venus Pluto Establishing communication with EVM FVMI checkPass Motherboard checkPass	Mercury Neptu Channel 0 Channel 1 Channel 2 Channel 3	
Dev 0) Mercury Rev 4 detected Octal FVMI BoardID=6 SN=103 detected Mercury Loadboard BoardID=2 SN=30 de Setting supplies Dev 0) Mercury Rev 4 detected Three-stated Driver and PMU.	Channel <u>4</u> Channel <u>5</u> Channel <u>6</u> Channel <u>7</u>	
Chan 0 - Calibrating PMU MV Calibrating DAC‡0 Configured for Real-Time DATA input: Configuration complete.	<u>C</u> entral Reg <u>P</u> MU Config PMU <u>L</u> evels	
Driver/Comparator Per-Channel Configuration		

3 Mercury Loadboard Detailed Description

Figure 7 illustrates the Mercury EVM loadboard. The loadboard contains the Mercury device as well as the necessary circuitry to validate & characterize on the bench environment.

Note:

- The turquoise nodes are new to Mercury Loadboard Rev B and Rev C.
- The Rev C loadboard also contains conjugate termination of the DOUT pins. This is noted in pink.

Figure 7: Mercury EVM Detailed Block Diagram

3.1 <u>Resistor Network Definitions</u>

Figure 8 illustrates the Mercury EVM resistor network definitions. The software only allows a single resistor value to be switched in.

Figure 8: Mercury EVM Resistor Network Block Diagram

3.2 ADC and Analog Mux

The Octal FVMI contains a 24-bit ADC and analog muxes. **Table 5** lists the Mercury EVM loadboard specific mux input sources.

Addr	VINP#	VINPOS(A)	VINN#	VINNEG(A)
7	VINP8	Reserved	VINN8	No connect
8	VINP9	EXT_FS	VINN9	No connect
9	VINP10	TEST_NODE	VINN10	No connect
10	VINP11	MONITOR	VINN11	No connect
11	VINP12	TC_15	VINN12	TC_7
12	VINP13	TC-31 (DOUT EVEN)	VINN13	No connect
13	VINP14	TC-32 (DOUT ODD)	VINN14	No connect

Table 5: FVMI Analog Mux – VINPOS(A) & VINNEG(A) Mapping

3.3 Controller Logic

The Mercury loadboard contains seven 8-bit latches (registers) and a 16K EEPROM. The Cbit1 to CBit7 are also used to control various relays; the C-Bits originate from the Octal FVMI board. Figure 9 illustrates the Mercury EVM controller section.

The following table shows how the control signals are used for the different board revisions.

Color	Usage
White	All revisions
Turquoise	New or modified with Rev B and Rev C loadboard
Strikethrough	No longer present on Rev B or Rev C loadboard

CBIT#	Def	Bit Name	Bit Description
1	0	DOUT_DIN_SEL01	Connect DOUT/DIN Chan#0/1 Select 0 = Short DOUT to DIN. Also connects to SMA 1 = Test Path
2	0	DOUT_DIN_SEL23	Connect DOUT/DIN Chan#2/3 Select 0 = Short DOUT to DIN. Also connects to SMA 1 = Test Path
3	0	DOUT_DIN_SEL45	Connect DOUT/DIN Chan#4/5 Select 0 = Short DOUT to DIN. Also connects to SMA 1 = Test Path
4	0	DOUT_DIN_SEL67	Connect DOUT/DIN Chan#6/7 Select 0 = Short DOUT to DIN. Also connects to SMA 1 = Test Path
5	0	TC31_32_SEL	Connect TC_31/32 Select 0 = Towards DUT 1 = Towards Test Node Note: Requires additional switches to be enabled to complete connection to DUT/Test Node.
6	0	CBIT6	Unused
7	0	CBIT7	Unused
8	-	Reserved	Used by ATE test board
9	-	Reserved	Used by Octal FVMI board

Table 6: Loadboard C-Bit (J6) Signal Definitions

The latches are daisy chained together using the SDI_SCK/RCK/CS signals originating from the Motherboard. The EEPROM is controlled by the LPORT1_OUT[4:2] signals originating from the motherboard. The loadboard latches are labeled STB_I to STB_P. This was named as an extension to the REG_A to REG_H Octal FVMI / Motherboard registers.

Table 7: STB_	I (U8: Mercury	AMUX & SEL)	Signal	Definitions
---------------	----------------	-------------	--------	-------------

STB_I Bit	Bit Name	Bit Description
3:0	AMUX	Analog MUX
		7 - 0 = DVL[0:7]
		15 – 8 = DVH[0:7]
4	SENSE_SEL	SENSE Select (SEL_1)
		0 = TEST_NODE
		1 = EXT_FORCE
5	DUT_GND_SEL	DUT_GND Select (SEL_2)
		0 = GND
		1 = TEST_NODE
6	MONITOR_SEL	MONITOR Select (SEL_3)
		0 = VINP11 (to A/D)
		1 = TEST_NODE
7	VREF_SEL	VREF Select (SEL_4
		0 = VREF (DPS)
		1 = TEST_NODE

STB_J Bit	Bit Name	Bit Description
0	Unused	
1	Unused	
2	Unused	
3	CON-EXT_FS-TN	Connect EXT_FS to TEST_NODE. Active Low (TC_32_SEL1)
4	CON-EXT_FS-EF	Connect EXT_FS to EXT_FORCE. Active Low (TC_32_SEL2)
5	EN_AMUX	Enable Analog MUX
6	CON_VFORCE_TN	Connect VFORCE to TEST_NODE. Active Low
		(VFORCE_SEL1)
7	CON_VFORCE_EF	Connect VFORCE to EXT_FORCE. Active Low
		(VFORCE_SEL2)

Table 8: STB	_J (U9: Me	rcury MISC Sv	vitches) Signa	I Definitions
--------------	------------	---------------	----------------	---------------

Table 9: STB_K (U10: Mercury VTT_SEL) Signal Definitions

STB_K Bit	Bit Name	Bit Description
0	VTT1_A_SEL	Connect VTT1 to TEST_NODE. Active Low
1	VTT2_A_SEL	Connect VTT2 to TEST_NODE. Active Low
2	VTT1_B_SEL	Connect VTT1 to GND. Active Low
3	VTT2_B_SEL	Connect VTT2 to GND. Active Low
4	CON_TC31_TN	Connect TC_31 (DOUT Even) to TEST_NODE. Active Low
5	CON_TC7_TN	Connect TC_7 to TEST_NODE. Active Low
6	CON_TC15_TN	Connect TC_15 to TEST_NODE. Active Low
7	CON_EF_TN	Connect EXT_FORCE to TEST_NODE. Active Low

Table 10: STB_L (U31: Mercury VBB, REXT & LOAD_SENSE) Signal Definitions

STB_L Bit	Bit Name	Bit Description
1:0	VBB_SEL	00 = Open Both (only use if an external VBB is provided)
		01 = Connect VBB to TC_15 (used for continuity/leakage test)
		10 = Connect VBB to VOH (normal operation)
		11 = Connect VBB to both TC_15 & VOH (don't use)
3:2	REXT_SEL	00 = Open Both <mark>(don't use)</mark>
	_	01 = Connect REXT to TC_15 (used for continuity/leakage test)
		10 = Connect REXT to 10K Resistor (normal operation)
		11 = Connect REXT to both TC_15 & 10K Resistor (don't use)
7:4	LOAD SENSE[3:0]	Connect EXT SENSE to Low Current Resistor #

Table 11: STB_M (U34: Mercury LOAD_SENSE) Signal Definitions

STB_M Bit	Bit Name	Bit Description
7:0	LOAD_SENSE[11:4]	Connect EXT_SENSE to Low Current Resistor #

Table 12: STB_N (U32: Mercury LOAD_SEL & EXT_FS) Signal Definitions

STB_N Bit	Bit Name	Bit Description
0	CON_CAP_OUT_TC15	Connect CAP_OUT to TC_15
		(used for continuity/leakage test).
1	CON_CAP_IN_TC15	Connect CAP_IN to TC_15
		(used for continuity/leakage test).
2	CON_CAP_PLL_TC15	Connect CAP_PLL to TC_15
		(used for continuity/leakage test).
3	CON_EXT_FS_ES	Connect EXF_FS to EXT_SENSE
7:4	LOAD_SEL[3:0]	Connect EXT_FORCE to Low Current Resistor #

Table 13: STB_O (U33: Mercury LOAD_SEL) Signal Definitions

STB_O Bit	Bit Name	Bit Description
3:0	LOAD_SEL[7:4]	Connect EXT_FORCE to Low Current Resistor #
7:4	LOAD_SEL[11:8]	Connect TEST_NODE to High Current Resistor #. Active Low

4 Document Revision History

Revision	Date	Description
A01	9/18/03	Initial Draft
B01	1/28/05	Loadboard Rev B and Motherboard Rev C Support
		Added Section Error! Reference source not found.
		Updated Figure 7
		Motherboard Rev C Support
		Added Section Error! Reference source not found.
		 Updated Section Error! Reference source not found.
		 Updated Setup Option Block Diagrams
		Added Detailed Block Diagram, see Section 3
		 Moved from 'Elevate Semiconductor User's Guide'
		 Added Resistor Network block diagram, see Section 3.1
		 Added Controller Logic block diagram, see Section 0
		Updated GUI screen shots.
B02	5/31/06	Document Motherboard silkscreen differences
B03	3/10/10	Added Mercury Rev C loadboard.
B04	5/20/13	Changed to Elevate Semiconductor format
B05	8/26/14	Updated software installation to support USB interface
B06	3/13/19	Added Windows 8/10 installation instructions