This document contains information on a product under development and the material is subject to change.
Table of Contents

1 **Introduction** .. 4

1.1 Unpacking - EVM Contents.. 4

1.2 **Recommended Test and Measurement Setup** .. 4

1.2.1 Power Supply... 4

1.2.2 PC Controller... 4

1.3 **Software Installation** .. 5

1.3.1 ISL55161/2/3/4 and Venus Family UIP Installation.. 5

1.3.2 USB Device Driver Installation... 5

1.3.3 Reboot Machine.. 11

1.3.4 Launching the EVM Program... 11

1.3.5 Software Un-Installation.. 11

2 **Getting Started** ... 12

2.1 Loadboard and Motherboard Revisions .. 12

2.2 Venus and ISL Product Families... 12

2.3 Default Configuration Setup Options .. 12

2.3.1 Real Time Data... 13

2.3.2 Ring Oscillator Mode (No Pulse Generator).. 14

2.3.3 LVDS Outputs Real Time Data... 15

2.3.4 Channel #0 in Real Time DATA and Channel #1 in Compare Only.. 17

2.3.5 PMU Force Voltage or Force Current Modes... 18

2.3.6 PMU Chan#0 in FV and Chan#1 in FI.. 19

2.3.7 Real Time PMU SV & Driver DVL using EN or SV Inputs.. 20

2.4 Quick Start Instructions.. 22

2.5 Motherboard Jumper Definition.. 23

2.6 EVM Menu Dialog Boxes.. 24

3 **EVM Loadboard Detailed Description** .. 25

3.1 ADC and Analog Mux.. 26

3.2 Venus Loadboard Controller.. 26

4 **Layout Considerations** ... 27

4.1 Conjugate Termination... 27

4.2 CAP DVH/DVL/VTT ... 27

5 Document Revision History ... 28
List of Figures
Figure 1: Installation Directory Structure .. 5
Figure 2: Real Time DATA Block Diagram .. 13
Figure 3: Ring Oscillator Block Diagram .. 14
Figure 4: LVDS Output Real Time DATA Block Diagram ... 16
Figure 5: Chan#0 Driver Mode and Chan#1 Compare Only Block Diagram ... 17
Figure 6: PMU FV/FI Block Diagram ... 18
Figure 7: PMU Chan# 0 FV and Chan #1 FI Block Diagram ... 19
Figure 8: Toggle PMU FV (SV) and Driver DVL Block Diagram ... 20
Figure 9: Expected Current Readings .. 22
Figure 10: Device Config Menu Options .. 24
Figure 11: Venus Loadboard Detailed Block Diagram .. 25

List of Tables
Table 1: EVM Contents .. 4
Table 2: Power Supply Requirements ... 4
Table 3: Motherboard Jumper Definitions .. 23
Table 4: FVMI Analog Mux – VINPOS(A) & VINNEG(A) Mapping .. 26
Table 5: Loadboard C-Bit (J6) Signal Definitions ... 26
Table 6: Venus Loadboard Latches (U3) Signal Definitions .. 26
1 Introduction

Congratulations on your purchase of the Elevate Semiconductor ISL55161/2/3/4 and Venus Family evaluation system. You will find that it serves as an invaluable development platform to help get your product to market in the shortest possible time. The ISL55161, ISL55162, ISL55163, ISL55164, Venus, Venus3, and Venus4 products will be referred to as "Venus" in this document unless otherwise stated below. The Evaluation Module (EVM) and Graphical User Interface (GUI) allow the customer to demonstrate and evaluate performance and functionality.

This document provides the instructions to install, setup, and operate the Venus EVM. Refer to the Elevate Semiconductor EVM User's Guide for a detailed description of the EVM system.

1.1 Unpacking - EVM Contents

Please check the contents of the EVM shipping carton to make sure you have received all of the items listed in Table 1. The system is already configured for the best setup, except for connections to the power supply, PC controller, and test equipment.

Table 1: EVM Contents

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ea.</td>
<td>EVM System (3 boards: Motherboard, FVMI Board, Venus Loadboard)</td>
</tr>
<tr>
<td>1 ea.</td>
<td>ISL55161/2/3/4 and Venus Family EVM Getting Started (this document)</td>
</tr>
<tr>
<td>1 ea.</td>
<td>EVM Contents List</td>
</tr>
<tr>
<td>1 ea.</td>
<td>User Interface Program Installation Flash Drive</td>
</tr>
<tr>
<td>1 ea.</td>
<td>USB A/B Cable</td>
</tr>
</tbody>
</table>

1.2 Recommended Test and Measurement Setup

Oscilloscope, Differential Pulse Generators, DMMs, and Source Measure Unit

1.2.1 Power Supply

Table 2 provides the required power supplies and current rating. The power supplies are connected using standard banana plugs. The customer needs to provide the power supply cables.

Table 2: Power Supply Requirements

<table>
<thead>
<tr>
<th>Supply</th>
<th>Current Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>+20V</td>
<td>1 A</td>
</tr>
<tr>
<td>+5V</td>
<td>1 A</td>
</tr>
<tr>
<td>-15V</td>
<td>1 A</td>
</tr>
</tbody>
</table>

1.2.2 PC Controller

To use the EVM User Interface Program (UIP), a PC with the following configuration is required:

- USB Port
1.3 **Software Installation**

There are 2 steps to install the ISL55161/2/3/4 and Venus Family demonstration program.

1. Install the ISL55161/2/3/4 and Venus Family UIP from the Flash Drive.
2. Install the USB driver.

Figure 1 illustrates the default directory structure. The user may change the `<root dir>` during the installation.

![Figure 1: Installation Directory Structure](image)

1.3.1 **ISL55161/2/3/4 and Venus Family UIP Installation**

To install the ISL55161/2/3/4 and Venus Family software package, run the SETUP program on the distribution Flash Drive and follow the prompts. The `ElevATE.exe` executable will be installed in the `EVM GUI` sub-directory. In addition, a short cut will be installed onto the desktop and in the `Start->Programs` folder. The `Start->Programs` folder also contains links to the different EVM User’s Guide, and documentation folders.

1.3.2 **USB Device Driver Installation**

Follow section 1.3.2.1 for installation instructions on the Windows 10/8 operating systems, section 1.3.2.2 for instructions for Windows 7, or section 1.3.2.3 for Windows XP

1.3.2.1 **Window 10/8**

To install the USB driver on Windows 10/8, the Driver Signature Verification needs to be disabled. This is accomplished using the following method.

1.3.2.1.1 Enter the Troubleshoot menu. Click “Restart” from the power options menu and hold down the “Shift” key at the same time. Once the computer has rebooted, you will be able to choose the Troubleshoot option.
1.3.2.1.2 Select “Advanced options” and “Startup Settings”.

1.3.2.1.3 You need to restart your computer one last time to modify boot time configuration settings.

1.3.2.1.4 You will be given a list of startup settings, including “Disable driver signature enforcement”. To choose the setting, you need to press the “F7” key. This will disable the driver signature enforcement until the computer is rebooted.
1.3.2.1.5 Continue with section 1.3.2.2 to finish installation of USB driver except choose the windows 10 or windows 8 option.

1.3.2.2 Windows 7

To install the USB device driver on a Windows 7 system, connect the USB port using the included USB A/B cable. The USB port does not need any external power or need to be connected to any other board for the device driver installation.

1.3.2.2.1 After connecting the USB cable from the PC to the “USB FX2 to Parallel” board, navigate to the Device Manager screen on your computer and look for the EZ-USB Icon. Right-Click on the EZ-USB Icon and select “Update Drive Software...”
1.3.2.2.2 Select “Browse my computer for driver software”.

![Driver Software Browser](image)

1.3.2.2.3 Install driver from the newly installed folder on your computer:

Windows 7: `\ElevATE Semi\EVM GUI\Elevate USB Driver\wlh-win7\(x64 or x86)`

Select x64 for a 64-bit system.
Select x86 32-bit system.

Select “Next”. The USB driver will be installed.
1.3.2.3 Windows XP

To install the USB device driver on a Windows XP system, connect the USB port using the included USB A/B cable. The USB port does not need any external power or need to be connected to any other board for the device driver installation.

1.3.2.3.1 After connecting the USB cable from the PC to the port, the following window appears. Select “No, not this time” and click Next.
1.3.2.3.2 Choose “Install from a list or specific location (Advanced)” and click Next.

This wizard helps you install software for:

USB Device

If your hardware came with an installation CD or floppy disk, insert it now.

What do you want the wizard to do?

- Install the software automatically (Recommended)
- Install from a list or specific location (Advanced)

Click Next to continue.

1.3.2.2.3 Select the top radio button, and check “Include this location in the search.” Type the following path into the text box.

- Windows XP: \ElevATE Semi\EVM GUI\Elevate USB Driver\wxp\ (x64 or x86)
- Select x64 for a 64-bit system.
- Select x86 32-bit system.
- Select “Next”. The USB driver will be installed.
1.3.3 Reboot Machine
After the EVM and USB software is installed, it is recommended to re-boot the machine.

1.3.4 Launching the EVM Program
The user can launch the EVM GUI from the desktop, Start->Programs folder, or EVM GUI sub-directory.

1.3.5 Software Un-Installation
The ElevATE EVM demonstration program may be un-installed using the uninstall window from the Windows Control Panel. The program can be found under the name “ElevATE EVM”.
2 Getting Started

The EVM is shipped in a pre-configured state that allows a customer to evaluate the basic driver and comparator output performance as well as the PMU Force Voltage (FV) / Force Current (FI) modes. Figure 2 provides an illustration of the recommended interconnections to the Venus EVM. However due to equipment availability, the EVM can easily and quickly be configured for different options.

2.1 Loadboard and Motherboard Revisions

This document only supports the Loadboard Rev F+ and the Motherboard Rev D+.

For earlier Loadboard & Motherboard revisions, please contact Elevate Semiconductor for the appropriate documentation.

2.2 Venus and ISL Product Families

The Loadboard supports all of the various Venus and ISL Products: Venus, Venus3, Venus4, ISL55161, ISL55162, ISL55163, and ISL55164. The Venus4, ISL55161 and ISL55163 devices redefined a handful of pins. To support the different products, the loadboard installs/removes several components to support the different features. Refer to Section 3 for details. Also refer to the schematic and datasheets.

2.3 Default Configuration Setup Options

The EVM has several default options for providing a DATA stream and/or configuring for PMU mode. Each of the default configurations below may not be available for every product.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Brief Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Reset</td>
<td>All registers default to the hardware default state.</td>
<td>None</td>
</tr>
<tr>
<td>Three-State (High-Z)</td>
<td>Puts Driver and PMU in three-state (high-Z).</td>
<td>None</td>
</tr>
<tr>
<td>Real Time Data (default)</td>
<td>Use motherboard DATA# SMA connectors</td>
<td>Section 2.3.1</td>
</tr>
<tr>
<td>Ring Oscillator Mode</td>
<td>Use Internal Ring Oscillator</td>
<td>Section 2.3.2</td>
</tr>
<tr>
<td>LVDS Output Levels</td>
<td>Use Channel #0 and #1 create a low-voltage differential signal</td>
<td>Section 2.3.3</td>
</tr>
<tr>
<td>Chan#0 RT DATA Chan#1 Compare Only</td>
<td>Configures Venus so can evaluate Drive/Compare on Channel #0 and Compare Only on Channel #1</td>
<td>Section 2.3.4</td>
</tr>
<tr>
<td>PMU FV or FI</td>
<td>Configures both channels to the desired mode</td>
<td>Section 2.3.5</td>
</tr>
<tr>
<td>PMU Chan #0 FV and Chan #1 FI</td>
<td>Use the other channel to provide current/voltage load</td>
<td>Section 2.3.6</td>
</tr>
<tr>
<td>Real Time SV / DVL</td>
<td>Use Real Time EN input to toggle between SV (FV) and DVL. Optionally can use SV input to toggle between SV and HiZ.</td>
<td>Section 2.3.7</td>
</tr>
</tbody>
</table>
2.3.1 Real Time Data

Figure 2 illustrates the recommended EVM configuration. This option sources the DATA# from a Pulse Generator. The ENABLE# is set to CPU Control and high (always enabled). The SV# is set to CPU Control and low (always disabled/open). The DATA# input term is set to 100 Ohm. This option works best if the customer has a differential pulse generator with at least a 200mV swing.

The DATA# MON and Comparator Outputs (CA#) have a 953 ohm pick-off. The scope should be set to 50 ohm termination with an attenuation factor of 20.

Note: Channel #1 could be connected in a similar fashion, not shown in diagram. Both channels are configured the same.

If the customer only has a single ended pulse generator, then the DATAN# can be tied to 1.0V (Vterm); the Vterm must be able to handle any current flow required for proper termination. Set the pulse generator to a 0.0V to 3.0V swing. Select the Single Ended RT Data from the EVM Setup configuration menu. The DATA# input term is set to NONE.

Figure 2: Real Time DATA Block Diagram
2.3.2 Ring Oscillator Mode (No Pulse Generator)

Figure 3 illustrates a possible configuration for customers without any pulse generator. This option uses the Ring Oscillator feature to generate a ~20 MHz pulse with a ~15 nS pulse width. All deskews are enabled and set to zero delay. Both channels are configured the same. This option is not available on the ISL55163.

The Comparator Outputs (CA#) have a 953 ohm pick-off. The scope should be set to 50 ohm termination with an attenuation factor of 20.

Figure 3: Ring Oscillator Block Diagram
2.3.3 LVDS Outputs Real Time Data

Figure 2 illustrates the EVM configuration for generating LVDS Outputs. A Low Voltage Differential Signal (LVDS) is defined as Vcm=1.25V and Vswing=350mV into a 100 Ohm termination.

The input data stream is feed into DATA#0. Channel #1 also sources its data from DATA #0 using Venus’s internal cross point switch. The Channel #1 signal is then inverted using the DATA-XOR feature. The driver DVH/DVL levels are programmed to 1.6V and 0.9V respectively. The ENABLE# is set to CPU Control and high (always enabled). The SV# is set to CPU Control and low (always disabled/open). The DATA# input term is set to 100 Ohm.

The user is responsible for programming the deskew values such that the 2 waveforms align. Failure to program the deskew values could result in poor output waveforms. The Driver Deskew Delay and Falling Edge Adjust (FEA) are enabled and set to 0.

There are 2 options to connecting the outputs to a scope.

Scope setup option 1: (true LVDS levels)
Connect a 100 Ohm resistor between DOUT0 and DOUT1. Use a 953 Ohm pick off connected to the Scope’s 50 Ohm input. This will result in a 20X attenuation, the scope should be configured accordingly. The 953 Ohm pick off is used to minimize reflections, this will also cause a 5% drop in the output voltages.

Scope setup option 2: (pseudo LVDS levels)
Connect the DOUT0 and DOUT1 to the Scope’s 50 Ohm input, the probe attenuation should be set to 1. The scope’s two 50 Ohm resistors are used to create a 100 Ohm termination between Channel #0 and Channel #1. The main difference is that the Vcm will be 0V (GND) instead of 1.25V. The user needs to program the driver DVH/DVL to +0.350V and -0.350V respectively.
Figure 4: LVDS Output Real Time DATA Block Diagram
2.3.4 Channel #0 in Real Time DATA and Channel #1 in Compare Only

Figure 5 illustrates a possible configuration for customers to evaluate the Driver and Compare only modes. To evaluate the Driver, connect a differential pulse generator to the DATA_0 SMAs. To evaluate the Comparator Only mode, connect a single-ended pulse generator into the Venus DOUT_1 SMA.

Channel#1 will be set to VTT Mode (50 Ohm termination) with the VTT Level set to 1.5V. The Channel#1 comparator thresholds are also set to 1.5V. The pulse generator should be set to swing around 1.5V. If other pulse generator levels are required, change the Venus VTT level and comparator thresholds as required.

Note: to put Channel#1 into HiZ mode instead of VTT mode, change the DR-Mode setting found in Product(ISL55161, ISL55162, etc…)->Channel 1->Driver Path Config

The 2 channels will run asynchronously since the 2 pulse generators are asynchronous.

The DATA#_MON and Comparator Outputs (CA#) have a 953 ohm pick-off. The scope should be set to 50 ohm termination with an attenuation factor of 20.

Figure 5: Chan#0 Driver Mode and Chan#1 Compare Only Block Diagram
2.3.5 PMU Force Voltage or Force Current Modes

Figure 6 illustrates the recommended configuration for PMU FV/FI evaluation. The external measurement unit (MU) should be configured in the opposite mode as Venus. After the configuration is completed, use the PMU FV/FI Levels dialog box the change the Venus output levels.

<table>
<thead>
<tr>
<th>Venus</th>
<th>MU</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVMI</td>
<td>FIMV</td>
</tr>
<tr>
<td>FIMV</td>
<td>FVMI</td>
</tr>
</tbody>
</table>

Figure 6: PMU FV/FI Block Diagram
2.3.6 PMU Chan#0 in FV and Chan#1 in FI

Figure 6 illustrates the configuration for PMU Chan #0 FV and Chan #1 FI evaluation. The other channel is used to provide a proper load (current load or voltage load depending on which channel is being evaluated). This option is useful when the customer doesn’t have an external measurement unit. Instead, the customer can use two DMMs to evaluate the Venus PMU.

<table>
<thead>
<tr>
<th>DMM Mode</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure Voltage</td>
<td>Use a ‘T’ connector to monitor DOUT_0 relative to GND</td>
</tr>
<tr>
<td>Measure Current</td>
<td>Connect in series between DOUT_0 and DOUT_1</td>
</tr>
</tbody>
</table>

Figure 7: PMU Chan# 0 FV and Chan #1 FI Block Diagram
2.3.7 Real Time PMU SV & Driver DVL using EN or SV Inputs

Figure 8 illustrates the configuration that uses the EN input to toggle the DOUT output between PMU FV (SV) and Driver DVL. In this application, the PMU FV is used to create the Super Voltage (SV) output. The PMU FV can output up to the VCC_SV (13V) supply minus headroom while the Driver uses the VCC (8V) supply.

The Driver is set to Real-Time Enable with CPU-DATA=0 (DVL); DVL is set to 0V. The PMU is set to Real-Time using the inverted Enable signal. The PMU is set to 12V in VR2, IR7 (32mA), and Tight feedback. The 32mA is chosen since that has the fastest response time. The PMU needs to be in Tight loopback to prevent the PMU from going into open loop when the SV switch is open.

<table>
<thead>
<tr>
<th>EN Input</th>
<th>Driver State</th>
<th>SV Switch</th>
<th>DOUT Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enabled</td>
<td>Open</td>
<td>DVL (0V)</td>
</tr>
<tr>
<td>0</td>
<td>Disabled</td>
<td>Closed</td>
<td>FV (12V)</td>
</tr>
</tbody>
</table>

- Channel #0: Short E5 & E6 (on Motherboard) between Pin 2-3 (towards front of board)
- Channel #0: Connect differential pair to EN_0 & ENN_0 SMA connectors (on Motherboard)

Transitioning from DVL to FV (SV) requires about 100nS. Therefore the pulse generator should be set accordingly.

Real Time SV Option

To optionally use the Real Time SV input to toggle between PMU FV (SV) and HiZ:

- Start with the Real Time SV / DVL using Enable setup
- Set Sel-SV-EN = SV in the Product(ISL55161, ISL55162, etc…)->Channel 0->Driver Path Config dialog box
- Channel #0: Short E7 (on Motherboard) between Pin 2-3 (towards front of board)
- Channel #0: Connect pulse generator to SV_0 SMA connector (on Motherboard)
- The Driver must be disabled. Either set the EN inputs to a static low or set Sel-RT-EN = CPU EN and set CPU-EN Value = Low.

<table>
<thead>
<tr>
<th>SV Input</th>
<th>SV Switch</th>
<th>DOUT Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Open</td>
<td>HiZ</td>
</tr>
<tr>
<td>1</td>
<td>Closed</td>
<td>FV (12V)</td>
</tr>
</tbody>
</table>

Note: DOUT should be connected to a Rload so DOUT gets pulled to GND when DOUT is in HiZ.

Figure 8: Toggle PMU FV (SV) and Driver DVL Block Diagram
Elevate Semiconductor Motherboard

V100 Load Board

Venus

DOUT_0 DOUT_1

+20V - BN1
-15V - BN2
+5V - BN3
GND - BN4

Scope

PC

USB Cable

USB FX2 to Parallel

Pulse Generator

Out* (RT SV option)

Pulse Generator

Out* (RT EN option)

Trig Out

Out

Out

Out

Out
2.4 Quick Start Instructions

1. Disable external power supply
2. Connect the power supplies cables (not provided) from the power supply to the Elevate Semiconductor EVM Motherboard.
3. Connect the USB FX2 to Parallel board (J1) to the FVMI board (J2)
4. Connect the USB cable (provided) from the PC to J10 on the USB FX2 to Parallel board.
5. Setup the EVM and equipment based on the desired EVM Setup, see Section 2.
6. Set external power supply voltages and current limits.
7. Enable external power supply
8. Run the Elevate Semiconductor ATE GUI software; refer to Section 1.3.4 for details.
9. At the Force Voltage – Measure Current dialog box (refer to Figure 9 below):
 a. Select the EVM Setup option based on the setup.
 b. Select the Enable Supplies check box
 c. Hit the Apply button to power up the Venus device.
 d. If the Calibrate DAC is set, the software will still calibrate the DAC. The DAC is calibrated using the VFV Test&Cal mux via the MONITOR pin.
 e. The software will also measure the current consumption. Figure 9 illustrates the expected current readings.
10. The software will automatically load a default register setting into the EVM device based on the EVM Setup option. At this point, the Venus product should be outputting the desired signal.

Figure 9: Expected Current Readings

The Reset System will put the EVM and Venus device into the default state. The Reset System should be issued whenever the power supply is powered OFF then ON. The Reset System is automatically performed when the program is initially launched.
2.5 Motherboard Jumper Definition

Table 3 lists the Motherboard Jumper definitions for the Venus EVM.

Table 3: Motherboard Jumper Definitions

<table>
<thead>
<tr>
<th>TC#</th>
<th>Jumper</th>
<th>Venus</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC_30</td>
<td>E12</td>
<td>PLL_CK</td>
<td>Short Pin 1 & 2. Source from Motherboard PLL Generator Short Pin 2 & 3. Source from SMA. Towards front of board. (Use for Setting for ISL55163)</td>
</tr>
<tr>
<td>TC_29</td>
<td>E11</td>
<td>PLL_CKB</td>
<td>Short Pin 1 & 2. Source from Motherboard PLL Generator Short Pin 2 & 3. Source from SMA. Towards front of board. (Use for Setting for ISL55163)</td>
</tr>
<tr>
<td>TC_28</td>
<td>E14</td>
<td>EXT_FORCE</td>
<td>Short Pin 2 & 3. Towards front of board</td>
</tr>
<tr>
<td>TC_27</td>
<td>E15</td>
<td>EXT_SENSE</td>
<td>Short Pin 2 & 3. Towards front of board</td>
</tr>
<tr>
<td>TC_26</td>
<td>E2</td>
<td>SV1</td>
<td>Short Pin 1 & 2. Source from latch Short Pin 2 & 3. Source from SMA</td>
</tr>
<tr>
<td>TC_25</td>
<td>E10</td>
<td>ENN_1</td>
<td>Short Pin 1 & 2. Source from latch Short Pin 2 & 3. Source from SMA</td>
</tr>
<tr>
<td>TC_24</td>
<td>E9</td>
<td>EN_1</td>
<td>Short Pin 1 & 2. Source from latch Short Pin 2 & 3. Source from SMA</td>
</tr>
<tr>
<td>TC_23</td>
<td>E8</td>
<td>N/A (DATAN_1)</td>
<td>Short Pin 1 & 2. Do not use SMA. Use SMAs on Loadboard</td>
</tr>
<tr>
<td>TC_22</td>
<td>E7</td>
<td>N/A (DATA_1)</td>
<td>Short Pin 1 & 2. Do not use SMA. Use SMAs on Loadboard</td>
</tr>
<tr>
<td>TC_21</td>
<td>E1</td>
<td>SV0</td>
<td>Short Pin 1 & 2. Source from latch Short Pin 2 & 3. Source from SMA</td>
</tr>
<tr>
<td>TC_20</td>
<td>E6</td>
<td>ENN_0</td>
<td>Short Pin 1 & 2. Source from latch Short Pin 2 & 3. Source from SMA</td>
</tr>
<tr>
<td>TC_19</td>
<td>E5</td>
<td>EN_0</td>
<td>Short Pin 1 & 2. Source from latch Short Pin 2 & 3. Source from SMA</td>
</tr>
<tr>
<td>TC_18</td>
<td>E4</td>
<td>N/A (DATAN_0)</td>
<td>Short Pin 1 & 2. Do not use SMA. Use SMAs on Loadboard</td>
</tr>
<tr>
<td>TC_17</td>
<td>E3</td>
<td>N/A (DATA_0)</td>
<td>Short Pin 1 & 2. Do not use SMA. Use SMAs on Loadboard</td>
</tr>
<tr>
<td>TC_16</td>
<td>E13</td>
<td>CAP_PLL</td>
<td>Open</td>
</tr>
<tr>
<td>TC_15</td>
<td>E20</td>
<td>DUT_GND</td>
<td>Open (can optionally use SMA as DUT_GND voltage input)</td>
</tr>
</tbody>
</table>
2.6 EVM Menu Dialog Boxes

Figure 10 illustrates the Venus menu options. These provide access to the Venus registers.

Figure 10: Device Config Menu Options
3 EVM Loadboard Detailed Description

Figure 11 illustrates the EVM loadboard. The loadboard contains the Elevate Semiconductor device as well as the necessary circuitry to validate & characterize in the bench environment.

The loadboard supports all of the various Venus Family products.

<table>
<thead>
<tr>
<th>Color</th>
<th>Product Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>All Venus products</td>
</tr>
<tr>
<td>Green</td>
<td>Venus, Venus3, ISL55162, ISL55164</td>
</tr>
<tr>
<td>Turquoise</td>
<td>Venus4, ISL55161, ISL55163</td>
</tr>
<tr>
<td>Pink</td>
<td>Installed but not used in ISL55163</td>
</tr>
</tbody>
</table>

Figure 11: Venus Loadboard Detailed Block Diagram
3.1 ADC and Analog Mux

The Octal FVMI contains a 24-bit ADC and analog muxes. Table 4 lists the Venus EVM loadboard specific mux input sources.

Table 4: FVMI Analog Mux – VINPOS(A) & VINNEG(A) Mapping

<table>
<thead>
<tr>
<th>Addr</th>
<th>VINP#</th>
<th>VINPOS(A)</th>
<th>VINN#</th>
<th>VINNEG(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>VINP8</td>
<td>Reserved</td>
<td>VINN8</td>
<td>VREF Divider</td>
</tr>
<tr>
<td>8</td>
<td>VINP9</td>
<td>MONITOR</td>
<td>VINN9</td>
<td>No connect MON REF</td>
</tr>
<tr>
<td>9</td>
<td>VINP10</td>
<td>EXT_FORCE</td>
<td>VINN10</td>
<td>No connect</td>
</tr>
<tr>
<td>10</td>
<td>VINP11</td>
<td>R_EXT</td>
<td>VINN11</td>
<td>No connect</td>
</tr>
<tr>
<td>11</td>
<td>VINP12</td>
<td>CAP_PLL</td>
<td>VINN12</td>
<td>No connect</td>
</tr>
<tr>
<td>12</td>
<td>VINP13</td>
<td>TC-31 (DOUT_1)</td>
<td>VINN13</td>
<td>No connect</td>
</tr>
<tr>
<td>13</td>
<td>VINP14</td>
<td>TC-32 (DOUT_0)</td>
<td>VINN14</td>
<td>EXT_SENSE</td>
</tr>
</tbody>
</table>

3.2 Venus Loadboard Controller

The Venus loadboard contains one 8-bit latch (register) and a 16K EEPROM. The control signals originate from the motherboard. The C-Bits originate from the Octal FVMI board.

Table 5: Loadboard C-Bit (J6) Signal Definitions

<table>
<thead>
<tr>
<th>CBIT#</th>
<th>Def</th>
<th>Bit Name</th>
<th>Bit Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:1</td>
<td>0</td>
<td>CBIT[6:1]</td>
<td>Unused</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>LATCH_CS</td>
<td>U3 Latch CS</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>Reserved</td>
<td>Used by ATE test board</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>Reserved</td>
<td>Used by Octal FVMI board</td>
</tr>
</tbody>
</table>

Table 6: Venus Loadboard Latches (U3) Signal Definitions

<table>
<thead>
<tr>
<th>Bit #</th>
<th>Bit Name</th>
<th>Bit Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:0</td>
<td>REXT_SEL</td>
<td>0=Connect REXT to 10K. (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1=Connect REXT to TC15 (for continuity/leakage test)</td>
</tr>
<tr>
<td>3:2</td>
<td>DG0_SEL</td>
<td>0=Connect DUT_GND#0 to GND (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1=Connect DUT_GND#0 to TC15 (for continuity/leakage test)</td>
</tr>
<tr>
<td>5:4</td>
<td>DG1_SEL</td>
<td>0=Connect DUT_GND#1 to GND (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1=Connect DUT_GND#1 to TC15 (for continuity/leakage test)</td>
</tr>
<tr>
<td>7:6</td>
<td>VREF_SEL</td>
<td>0=Connect VREF pin to VREF DUT supply (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1=Connect VREF pin to TC15 (for continuity/leakage test)</td>
</tr>
</tbody>
</table>
4 Layout Considerations

This section provides some layout guidelines. Customers may employ different layout strategies to achieve the desired performance.

4.1 Conjugate Termination

The Inductor | Resistor conjugate termination is used to compensate for the lumped capacitance from Driver output and pads.

- should be placed as close to the DOUT pad as possible
- Use 0402 Resistor component size
- Use 0603 Inductor component size. Inductor should have low R. In addition to AC performance, need to minimize the R for when doing parametric (PMU) measurements. The Inductor should be able to tolerate large DC currents; up to 32mA in normal operating modes and possible 100mA in a short circuit condition.
- Create a ‘void’ in the GND plane beneath the DOUT pad and Inductor/Resistor components

4.2 CAP DVH/DVL/VTT

The DVH/DVL/VTT capacitors are used to provide the Driver AC current.

- should be placed as close to the pad as possible
- match trace lengths as close as possible; including Channel to Channel to obtain symmetric performance
- The EVM uses 0805 components for ease in troubleshooting. Customers can use 0603 or capacitor packs.

![Diagram](image-url)
5 Document Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>9/18/03</td>
<td>Initial Draft. Extracted from Venus EVM User’s Guide.</td>
</tr>
<tr>
<td>A02</td>
<td>11/7/03</td>
<td>Added LVDS Output configuration option, section 2.3.3</td>
</tr>
<tr>
<td>C01</td>
<td>1/27/05</td>
<td>Updated Section 2 for Motherboard Rev C and Loadboard Rev C support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Motherboard Rev A/B and Loadboard Rev B are no longer described in this document.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Detailed Block Diagram, see Section 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Controller Logic block diagram, see Section 3.</td>
</tr>
<tr>
<td>D01</td>
<td>5/26/05</td>
<td>Rev D and Rev D2 support</td>
</tr>
<tr>
<td>D02</td>
<td>2/20/07</td>
<td>Overhauled Section 2.3.4. Now call it Drive Only and Compare Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Real Time SV/DVL, Section 2.3.7</td>
</tr>
<tr>
<td>G01</td>
<td>6/11/2011</td>
<td>Added ISL55161/2/3/4 Products to document.</td>
</tr>
<tr>
<td>G02</td>
<td>4/29/2014</td>
<td>Added the USB interface to the documentation.</td>
</tr>
<tr>
<td>G03</td>
<td>06/21/2018</td>
<td>Added Windows 8/10 installation instructions.</td>
</tr>
</tbody>
</table>