月: 2020年8月

チップス

FPGAを使用した半導体ATEのフォーマットおよびタイミング生成

ATEデジタルシステムは、伝統的にシーケンサー、フォーマッター、タイミングジェネレーター、 ピンエレクトロニクス。設計の各セクションに使用するコンポーネントの決定は、主にパフォーマンス仕様と必要なコストによって決まります。これらのコンポーネントは、ディスクリートの完全カスタムASIC、フィールドプログラマブルゲートアレイ、または市販の部品にまで及びます。

フィールドプログラマブルゲートアレイ(FPGA)は柔軟性を提供し、シーケンサーおよび低/中性能のATEデジタルサブシステムのタイミング/フォーマットに使用されています。

シーケンサーをFPGAに実装すると、ロジック、メモリ、または混合信号のテスト用にデジタルサブシステムをカスタマイズする柔軟性が提供されます。必要なFPGAクロッキングは通常、ターゲットFPGAの仕様の範囲内です。シーケンサーとパターン実行ステージは、通常、競合他社の製品と比較して各システムを独自のものにします。

形式とタイミングの機能は、通常、さまざまなATEプラットフォーム間で類似しています。違いは、サイクル間のエッジ配置の分解能と精度、およびチャネルのデスキューキャリブレーションに使用されるファインスキューコントロールにあります。多くの場合、ピンエレクトロニクスICでは細かいデスキュー制御が利用できます。

FPGAはタイミングとフォーマット機能に成功裏に使用されていますが、システムパフォーマンス要件が50-100Mhz以上のパターンレートに増加し、システムエッジの配置精度が1ns未満になると、FPGAはすぐに制限要因になります。 FPGA I / O構造のSERDESエンジンは100ps未満の分解能を提供できますが、エッジ間のタイミング配置にこの信頼性を実装すると、設計時間が増加し、設計者はより大きくてより高価なFPGAを選択する必要があります。

SERDESブロックの最も一般的な使用法は、PCIeなどのさまざまな通信プロトコル用です。FPGA設計ツールは、これらの機能を設計および特性評価するための優れたツールを提供します。これらのSERDESブロックを使用してタイミングセクションを設計する場合、設計者はしばしばロードブロッキングに遭遇し、FPGAベンダーから問題を解決するために利用できるツールは限られています。多くの場合、設計者はこれらのタイミング回路の実装と特性評価に予算の10倍のエンジニアリング時間を費やしています。典型的な問題には、チャネル間で一貫性のない直線性、許容可能なジッターより高い、実行から実行への設計のルーティングの困難さなどがあります。

設計者はチャネル数を増やすことを試みるので、より大きくてより高価なFPGAに移行する必要があります。これまで、設計者はより高速で大規模なFPGAを低コストで活用することができました。ただし、最近では、FPGA企業の焦点は、データセンターおよび人工知能市場に対応するための計算能力を高めることです。このようにコンピューティングエレメントを追加すると、コストが増加し、ATE設計者にとってのメリットが最小限またはマイナスになります。さらに、ATE市場に対応する古いデバイスのコストは、特に大きなデバイスの場合、劇的に上昇し始めています。これにより、FPGAだけで、より大きなFPGAを使用してより高いチャネルATEのコストを最大$50 /チャネルに押し上げました。

200 MHz以上のパターンレートでより高性能のATEを実現するには、カスタムまたは市販のフォーマットおよびタイミングジェネレーターICを使用する必要があります。その後、設計のシーケンサー部分に妥当なコストのFPGAを使用できます。

市販のタイミングジェネレーターを使用すると、小規模なATE企業がデジタルATE計測のパフォーマンスラダーを移行できます。これらのチップは、制約の厳しいFPGA I / Oを必要とせずに、高性能ピンドライバーにインターフェースするように設計されています。

ハイエンドのパフォーマンスを備えたタイミングチップを購入することで、設計、特性評価、テスト時間を短縮できるだけでなく、より高性能なデジタルATE仕様を提供しながら、チャネルあたりのコストを削減できます。タイミング精度はベンダーによって指定されており、システムテストでこれらのパラメーターの広範な特性評価や製造テストを行う必要はありません。

商用タイミングチップは最終的に節約します ATE会社 より高いエンドパフォーマンスへの道を提供しながら、開発コストと市場投入までの時間、およびシステムの全体的なコスト。

MIPI5G 200

MIPIの仕様とテスト

モバイル業界のプロセッサインターフェイス(MIPI®)標準は、スマートフォン、タブレット、ラップトップ、ハイブリッドデバイスなどのモバイルデバイスの設計に関する業界仕様を定義しています。 MIPIインターフェースは、5Gモバイルデバイス、コネクテッドカー、モノのインターネット(IoT)ソリューションで戦略的な役割を果たします。 MIPI規格では、MIPID-PHY®、M-PHY®、C-PHY®の3つの固有の物理(PHY)層仕様が定義されています。 MIPI D-PHYおよびC-PHY物理層はカメラおよびディスプレイアプリケーションをサポートし、高性能カメラ、メモリ、およびチップツーチップアプリケーションはM-PHY層の上でサポートされます。

MIPIは、Intel、Nokia、Samsung、Motorola、TI、STなどのモバイル業界リーダーのコラボレーションであるMIPI Allianceによって管理されています。MIPIAllianceの目的は、モバイルアプリケーションプロセッサへのインターフェイスのオープンスタンダードを促進することです。これは、モバイルユーザーに新しいサービスをより速い速度で提供するのに役立ちます。

モバイル市場では、MIPIアライアンスの仕様はモバイルネットワーク上で動作するモバイルデバイスを対象としています。典型的なデバイスは、スマートフォン、タブレット、ラップトップ、ハイブリッドデバイスです。 MIPIアライアンスは、物理層、マルチメディア、チップ間通信(IPC)、制御/データ、デバッグ/トレース、およびソフトウェア統合アプリケーションに関するメーカーのさまざまなニーズに対応する仕様を提供します。

すべての仕様は、モバイル設計を成功させるために不可欠な3つの特性に対応するように設計されています。1)バッテリー寿命を維持するための低電力。 2)機能が豊富でデータ集約型のアプリケーションを可能にする高帯域幅、および3)デバイス内の無線と他のサブシステム間の干渉を最小限に抑える低電磁干渉(EMI)。

スマートフォン

スマートフォン業界は、MIPI仕様の最大の単一市場です。すべての主要なチップベンダーはMIPIアライアンス仕様を使用しており、市場に出回っているすべてのスマートフォンには少なくとも1つのMIPI仕様が含まれています。 MIPI仕様は、何億ものスマートフォンで使用されています。

MIPIアライアンスの仕様は、デバイスのインターフェイスのニーズの全範囲をカバーしています。仕様は、モデム、アプリケーションプロセッサ、カメラ、ディスプレイ、オーディオ、ストレージ、アンテナ、チューナー、パワーアンプ、フィルター、スイッチ、バッテリー、センサー、およびその他のコンポーネントを統合するために適用できます。

コンポーネントベンダーとデバイスメーカーは、MIPIアライアンスの仕様を使用しています。これは、テクノロジーによって設計が簡素化され、設計コストが削減され、効率的で高性能な製品の市場投入までの時間が短縮されるためです。そして基本的に、各仕様は、モバイルデバイスに必要な3つのパフォーマンス特性を保証するように最適化されています。バッテリー寿命を維持するための低電力、機能豊富なアプリケーションを可能にするための高帯域幅、および無線とサブシステムのパフォーマンスを最適化するための低電磁干渉(EMI)です。

タブレット、ラップトップ、ハイブリッドデバイス

モバイル機能とコンピューティング機能を統合するデバイスは、MIPIアライアンス仕様の重要な市場です。 MIPI仕様は、タブレット市場の確立と発展に役立ち、PC業界の多くの組織は、モバイル接続のラップトップ、タブレット/ラップトップハイブリッド、およびその他のデバイスでMIPI仕様を使用しています。これらのデバイスでのMIPI仕様の一般的な使用例には、高解像度ディスプレイの消費電力の接続と管理、およびカメラやディスプレイを接続するためにヒンジを介して展開されるワイヤの数の最小化が含まれます。

 仕様

MIPI仕様は、シグナリング特性やプロトコルなどのインターフェイステクノロジーのみを対象としています。アプリケーションプロセッサや周辺機器全体を標準化するわけではありません。 MIPI仕様を利用する製品は、多くの差別化機能を保持します。共通のMIPIインターフェースを共有する製品を有効にすることで、システム統合の負担が以前よりも少なくなる可能性があります。[8]

MIPIは、エアインターフェイスやワイヤレス通信規格に依存しません。 MIPI仕様は、アプリケーションプロセッサと周辺機器のインターフェイス要件のみに対応しているため、MIPI準拠の製品は、GSM、CDMA2000、WCDMA、PHS、TD-SCDMAなどを含むすべてのネットワークテクノロジに適用できます。

MIPIによる仕様には次のものがあります。

  • カメラシリアルインターフェースディスプレイシリアルインターフェース
  • ディスプレイピクセルインターフェース
  • システム電源管理インターフェイス(SPMI)
  • 2014年に導入されたSoundWire [12]

MIPICSIインターフェイス

CSIはCameraSerialInterfaceの略です。ホストプロセッサとカメラモジュール間の高速シリアルインターフェースを指定します。図2は、MIPICSI-2インターフェイスを示しています。

以下は、MIPICSI-2インターフェイスの機能です。

  • これは、イメージセンサーとアプリケーションプロセッサ間の高性能シリアルインターフェイスです。
  • 最大4本のデータラインを備えたD-PHY物理層を使用し、約4Gbpsのデータスループットを提供します。
  • 示されているように、カメラ制御機能に使用される個別のI2C準拠のインターフェース。
  • MIPI CSIインターフェイスには、次の利点があります。
  • スケーラビリティ•低電力•信頼性の向上•システムコストの削減

MIPIDSIインターフェイス

 DSIはDisplaySerialInterfaceの略です。高速で高性能なシリアルインターフェースです。 DSIインターフェイスは、アプリケーションプロセッサとディスプレイモジュール(またはディスプレイブリッジIC)間の効率的で低電力、低ピン数の接続を提供します。 MIPID-PHYを物理層として使用します。 MIPID-PHYの機能は次のとおりです。

  • 4つのデータラインと1つの共通差動ラインを使用します
  • 最大1Gbpsのスループットを実現できます。
  • ピクセルコマンドとデータコマンドの両方が、プロセッサとディスプレイICの間で単一の物理ストリームにシリアル化されます。ステータスはディスプレイICからアプリケーションプロセッサに伝達されます。

MIPIテスト

MIPIの設計とシミュレーション

進化するデータストレージ、データ転送、ディスプレイ、カメラ、メモリ、電力、およびMIPI仕様で定義されているその他の要件に対応するモバイルデバイスを設計する必要があります。顧客は、マルチメディアコンテンツと機能豊富なアプリケーションのより高いパフォーマンス、リアルタイムストリーミングを求めています。

MIPI送信機テスト

MIPIトランスミッターデバイスのパフォーマンスをテストして、伝送ラインの受信側での信号不純物の根本的な原因ではないことを確認する必要があります。 MIPI D-PHY、M-PHY、およびC-PHYにはすべて、固有の送信機テストの課題があります。何百ものテストを実行するため、自動化されたコンプライアンステストソフトウェアを使用することで、テスト時間を大幅に節約できます。

MIPIレシーバーテスト

MIPIレシーバーデバイスをテストして、入力信号のデジタル信号コンテンツを適切に検出できることを確認する必要があります。伝送チャネルの信号劣化を説明するために、最悪の場合のストレス条件に対してテストすることが重要です。 MIPIレシーバーのパフォーマンスをテストするには、正確な高速信号刺激とビットエラー検出機能が必要です。自動コンプライアンステストソフトウェアを使用すると、設計のすべての主要なパラメータをすばやくテストできます。

MIPIプロトコルテスト

プロトコルの検証は、主にインターフェイス層で行われます。 MIPI仕様のPHY層では、CSI-2、DSI-1、DigRF、CSI-3、UFS、UniPro、SSIC、MPCIeなど、さまざまなプロトコルがサポートされています。各プロトコルには、独自の要件とテストがあります。 MIPI D-PHYプロトコルとM-PHYプロトコルの両方で、物理層とリンク層の間、およびトランスポート層と高レベルアプリケーション層の間にスタックがあります。エラーが存在する場所を正確に特定するには、そのスタックを「調べる」ことができることが理想的です。

MIPIインターフェースが5Gスマートフォンを可能にする方法

ハイエンド5Gスマートフォンの最初の波(フェーズ1)は、現在市場に出ているハイエンド4Gデバイスの拡張であると予想されます。主な機能強化には、新しい5G NR RFサブシステムの追加、およびより優れたユーザーエクスペリエンスとより豊富なマルチメディア機能を可能にする他のサブシステムの進化が含まれます。たとえば、これらの5Gスマートフォンには、高フレームレート/スローモーションビデオキャプチャ機能を備えた3〜4台の高解像度リアカメラ、強化されたマイクアレイ、マルチチャンネルオーディオおよびステレオスピーカーが搭載されている場合があります。

5Gモデムとアプリケーションプロセッサは、カメラ用のCSI-2やディスプレイ用のDSI-2などのMIPI仕様に加えて、低電力、高帯域幅、ピン効率の高いMIPID-PHYまたはC-PHY物理層を使用します。 。 RFフロントエンドデバイス制御用のMIPIRFFE、および高性能フラッシュストレージ用のM-PHYを備えたMIPI UniProは、すべて5G設計でユビキタスになりつつあります。 MIPI I3C、SoundWire、SLIMbus、および今後のVGI仕様は、今後の多くの5Gスマートフォンプラットフォームでも採用される予定です。

MIPICSI-2

MIPI CSI-2は、モバイルおよびその他の市場で最も広く使用されているカメラインターフェイスです。 1080p、4K、8K以上のビデオ、高解像度写真など、幅広い高性能アプリケーションをサポートする使いやすさと機能により、広く採用されています。

設計者は、モバイルデバイスでのシングルカメラまたはマルチカメラの実装にMIPICSI-2を快適に使用できる必要があります。このインターフェースは、ヘッドマウントバーチャルリアリティデバイスのカメラを相互接続するためにも使用できます。インフォテインメント、安全性、またはジェスチャーベースの制御のための自動車用スマートカーアプリケーション。クライアントコンテンツの作成および消費製品用のイメージングアプリケーション。カメラドローン; IoTアプライアンス;ウェアラブル;および3D顔認識セキュリティまたは監視システム。

最新リリースのMIPICSI-2 v3.0は、モバイル、クライアント、自動車、産業用IoT、医療などの複数のアプリケーションスペースでマシン認識の機能を強化できるように設計された仕様の拡張機能を提供します。 RAW-24は、個々の画像ピクセルを24ビットの精度で表現するためのもので、マシンが高品質の画像から決定を下せるようにすることを目的としています。たとえば、自動運転車は、画像の暗さが無害な影なのか、回避すべき車道のくぼみなのかを解読できます。画像の分析、アルゴリズムの推測、より適切な推論を行うためのSmart Region of Interest(SROI)により、たとえば、工場のフロアにある機械でベルトコンベアの潜在的な欠陥をより迅速に特定したり、医療機器でそのような異常をより確実に認識したりできるようになります。腫瘍として。また、イメージセンサーモジュールとアプリケーションプロセッサ間の接続をカプセル化するためのユニファイドシリアルリンク(USL)は、生産性とコンテンツ作成のためにIoT、自動車、クライアント製品に必要な配線の数を減らすために重要です。ノートブックプラットフォーム。

MIPI CSI-2は、MIPIアライアンスの2つの物理レイヤー(MIPI C-PHYv2.0またはMIPID-PHY v2.5)のいずれかに実装できます。これは、以前のすべてのMIPICSI-2仕様と下位互換性があります。パフォーマンスはレーンスケーラブルであり、たとえば、3レーン(9線式)MIPI C-PHYv2.0インターフェイスを使用して最大41.1Gbps、または4レーン(10線式)MIPID-PHYを使用して18Gbpsを提供します。 MIPI CSI-2v2.1でのv2.5インターフェイス。

MIPI仕様ベースのデバイスのテスト

の最新トレンド 半導体デバイス メーカーは、単一のデバイスに複数の高速MIPI®仕様ベースのポートを追加することになっています。これにより、イメージングおよびディスプレイを多用するアプリケーションの機能豊富な実装が可能になりますが、フォールトカバレッジの高いテストソリューションの作成を担当する本番テストエンジニアにとっても大きな課題となります。 自動試験装置(ATE)。このようなフォールトカバレッジでは、多くの場合、並列の高速なシステム指向の機能テストを作成すると同時に、レガシーATEの制限とテスト対象のMIPIプロトコルの複雑さに取り組みます。

MIPIによって定義された3つの高速PHY層標準があり、それらはさまざまなアプリケーションに使用されます。

  • D-PHYは、低速の帯域内リバースチャネルを備えた可変速度の単方向クロック同期ストリーミングインターフェイスであり、カメラ(CSI)およびディスプレイ(DSI)のインターフェイスをサポートします。
  • M-PHYは、プロセッサ間通信に使用されるカメラ(CSI)、ストレージ(UFS)、DigRF、UniPro、LLI、SSIC、M-PCIeなどのインターフェイスをサポートするパフォーマンス駆動型の双方向パケット/ネットワーク指向のインターフェイスです。
  • C-PHYは、可変速度の単方向の組み込みクロックストリーミングインターフェイスであり、低速の帯域内リバースチャネルを備え、カメラ(CSI)およびディスプレイ(DSI)のインターフェイスをサポートします。

各インターフェイスは、クロッキング方法、チャネル補償、ピン数、最大振幅、データレートとフォーマット、ポートあたりの帯域幅、データエンコーディング、クロックリカバリなどの幅広いパラメータを提供します。 D-PHY、M-PHY、およびC-PHY MIPIインターフェイスは、ユーザーがアクセスできないため、コンプライアンスプログラムによって制御されません。ただし、コンポーネント間の相互運用性を確保するには、半導体ベンダーとシステムインテグレーターにとって仕様の適合性の検証が重要です。

コンポーネントのMIPI仕様とConformanceTest Suite(CTS)要件は非常に複雑であり、それらをテストすることは困難です。シグナルインテグリティが維持されていることを確認しながら、テスト対象デバイス(DUT)に接続する、DUTに過度のストレスをかけずに最悪の場合の刺激を作成する、またはDUTからテスト結果情報を取得するなどがそのような課題の例です。

BERテストソリューションは、正確な高速信号刺激およびビットエラー検出機能を提供することにより、すべてのタイプのMIPIレシーバーを正確にテストする柔軟性を提供します。より複雑なC-PHYおよびD-PHY信号刺激は、高性能の任意波形発生器で対処できます。自動テストソフトウェアは、再現性と精度を確保しながら、テストの開発と実行時間を短縮するのに役立ちます。

ATEの競争優位性を高める

Elevateは、次世代の自動試験装置(ATE)を設計するための、革新的で低電力、高密度のコンポーネントの大手サプライヤーです。利用可能な最高密度、最低電力ソリューションを一貫して提供してきた確かな実績により、Elevate製品を中心に設計されたシステムは、ATE市場で競争上の優位性を持ち、エンドユーザーの価値を高めながら、新たなトレンドや課題にうまく適応できます。

Elevateは、さまざまなレベルの統合を備えたATE市場向けのさまざまなソリューションを提供しているため、System on a Chip(SOC)テストなどの複数のエンドユーザーセグメントの固有の要件に対応できます。 記憶力試験、バーンイン中のテスト(TDBI)、インサーキットテスト(ICT)など。

Elevateの使命は、業界で最も複雑なATEの課題に対処する世界クラスのテスト集積回路(IC)を提供することにより、半導体およびシステムテストのお客様にサービスを提供することです。私たちは、可能な限り低いテストコストを提供することを目標に、最低電力/最高密度のソリューションを設計することにより、現在および将来にわたってお客様の期待を超えるよう努めています。 

チップマスク

導入の昇格

ELEVATE:統合テスト技術における世界のリーダー

半導体テストの基礎:
テクノロジー愛好家は、高密度の集積回路内のトランジスタの数が2年ごとに2倍になるムーアの法則を知っています。これらのチップがどのように設計、製造、およびテストされるかについて考える人はほとんどいません。電子機器のシリコン含有量が増加すると、機能性が指数関数的に増加し、サイズ、電力、およびコストを削減する必要があります。製造上の欠陥がないかチップをテストする必要性は、動作するコンポーネントを提供し、長寿命性能を確保するために不可欠です。生産で行われるテストは、適切に包括的で、可能な限り低いコストでなければなりません。誰かがこれらすべてのICをテストするチップを作成する必要があります。その会社はElevATE Semiconductorです。

昇格、私たちは、主要なパラメータ(電力、速度、電圧、およびチップが動作するように設計されているシステム全体)から半導体のすべての機能をテストする集積回路を設計および構築します。処理とパフォーマンスの欠陥、またはパラメータ間の変動を経時的に特定できます。当社のソリューションは、すべてのデータI / Oを提供し、パラメトリックを測定し、電力を供給し、テスト対象デバイス(DUT)への電力応答を測定します。当社の回路は、データセンターアプリケーションで使用される最新の高速サーバープロセッサ、メモリモジュール、および人工知能(AI)FPGAを特徴付けるのに十分な精度を備えています。

私たちのチーム:
エンジニアに尋ねると、テストエンジニアは特別な品種であると言われます。私たちの創設者と私たちのチームの多くは、90年代初頭から半導体のテストスペースにいます。 2012年にIntersilがスピンアウトしたElevATEの遺産は、多くのソリューションが最初に設計されたPlanetATEとして2000年初頭にまで遡ります。当社の顧客には、最大の半導体テスト会社、スタートアップテスト会社、テストハウス、および半導体メーカーが含まれます。彼らは10年以上前にデザインインされた製品を調達し、今日も生産ボードで出荷を続けています。私たちは新しいデザインが少なくともその長い間利用できるようになることを期待しています。

私たちのアプローチ:
お客様の進化する課題により、次世代の製品が決まります。 半導体テスト テストのコストを最小限に抑えることを目標に、テスト対象のデバイスを増やすと同時に、テスト時間の短縮に向けて前進を続けています。さらに高速でチャンネル数が多い場合に可能な限り低い電力に対する需要が高まっているため、エンジニアはプロセスと設計の限界を押し上げる必要があります。

私たちはテストに重点を置いており、品質の重要性は設計、製造、およびサポートプロセスにとって重要であることを認識しています。 ElevATEはISO9001認定を受けており、継続的な改善組織です。当社の製品は、お客様のボード上でホームを見つける前に、徹底したテストと特性評価を経て厳格な認定を受けています。実際、各チップは、出荷の準備が整う前に3,000を超えるアナログテストを受けます。

私たちは、お客様のさまざまな技術的ニーズに合わせて製品をカスタマイズする方法を数多く提供しています。最先端の技術をお持ちの場合、それをテストするために世界最高のテスト回路が必要です。私たちと一緒に、私たちの経験、世界クラスの製品のポートフォリオ、そして私たちのチームが業界で最高である理由を見てください!

Japanese
トップにスクロールします

昇格製品選択ガイド

下記をクリックして、最新の製品選択ガイドをダウンロードしてください。

神秘

SOC 8進500 MHz統合型ピンエレクトロニクス/ DAC / PPMU /デスキュー

ダウンロードリクエスト私たちのミステリーデータシートを受け取るために以下の要求を記入してください。

ヨーロッパISL55180
PDFデータシート

フォームにご記入いただきありがとうございます。下のボタンをクリックしてPDFデータシートをダウンロードしてください。